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SIMULTANEOUS ESTIMATION OF THE STATE AND NOISE 

STATISTICS IN LINEAR DYNAMICAL SYSTEMS" 

By Paul D. Abramson, Jr. 
Electronics Research Center 

SUMMARY 

An optimal procedure for estimating the state of a 
linear dynamical system when the statistics of the measure- 
ment and process noise are poorly known is developed. The 
criterion of maximum likelihood is used to obtain an optimal 
estimate of the state and noise statistics. These estimates 
are shown to be asymptotically unbiased, efficient, and 
unique, with the estimation error normally distributed with 
a known covariance. The resulting equations for the 
estimates cannot be solved recursively, but an iterative 
procedure for their solution is presented. Several approxi- 
mate solutions are presented which reduce the necessary 
computations in finding the estimates. Some of the approxi- 
mate solutions allow a real time estimation of the state 
and noise statistics. 

Closely related to the estimation problem is the 
subject of hypothesis testing. Several criteria are 
developed for testing hypotheses concerning the values of 
the noise statistics that are used in the computation of 
the appropriate filter gains in a linear Kalman type state 
estimator. If the observed measurements are not consis- 
tent with the assumptions about the noise statistics, then 
estimation of the noise statistics should be undertaken 
using either optimal or suboptimal procedures. 

Numerical results of a digital computer simulation of 
the optimal and suboptimal solutions of the estimation 
problem are presented for a simple but realistic example. 

*Submitted to the Department of Aeronautics and 
Astronautics, Massachusetts Institute of Technology, 
on May 10, 1968, in partial fulfillment of the 
requirements for the degree of Doctor of Science. 
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Chapter 1 

INTRODUCTION 

1.1 Statement - _ _  and Discussion of the Problem 

Optimal estimation has received considerable attention 

in recent years in fields such as space navigation, statis- 

tical communication theory, and many others that often 

require the estimation of certain variables that are either 

not directly measurable or are being measured with instru- 

ments that are not sufficiently accurate for an adequate 

deterministic solution. In essence the procedures aim at 

reducing the effects of random disturbances associated with 

these "imperfect' instruments. 

In many situations, the estimation procedure consists 

of no more than averaging repeated measurements of the 

''same" quantity made with the same or different instruments. 

In this way, the random errors made in each measurement 

might "average out," resulting in a higher confidence in the 

value of the quantity being measured than would be the case 

if only a single measurement was taken. In this type of 

operation, the improved confidence in the estimate depends 

upon the fact that the "same" quantity being measured is 

truly time invariant. 

In more complex situations, the quantity being measured 

might change from one measurement time to another, Suppose 

it is known that the voltage across an electrical network 

decreases exponentially with time. A simple average of 
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repeated measurements of the voltage made at different times 

would lead to an erroneous estimate. However, if the time 

constant associated with the exponential decay is known, then 

each measured voltage can be related to the voltage at any 

specified time. These computed voltages can then be averaged 

to obtain an estimate of the voltage at the specified time. 

The examples illustrated above represent the most simple 

case of estimation in which each measurement carries the same 

weight so that simple linear averaging of the measurements is 

performed to obtain the estimate. However, if each measure- 

ment has associated with it a different confidence, usually 

characterized by the variance of the measurement error, then 

a more complicated estimation scheme must be employed which 

takes into account the differing accuracies of the measure- 

ments. Typical examples of this situation are: 1) when two 

or more different types of instruments are used to measure 

the same quantity, or 2) in the case of the previous example 

when there is some random characteristic in the exponential 

function of the voltage being measured. This leads to a 

reduction in the confidence in relating measurements made at 

some time distant from the specified time. 

Operational or computational procedures involving a 

consideration of the variances of the various noises in the 

prablem represent the first degree of sophistication in 

estimation. Various formulations have been advanced which 

characterize the statistical nature of the problem in some 

orderly pattern. There are two widely used techniques for 

optimal estimation when the time variation of the quantity 
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1 
being measured can be described by a linear differential 

equation and when the measurements are linearly related to 

the quantity being estimated. The initial significant work 

on this problem was by Wiener (Ref. 3 6 )  who developed the 

condition to be satisfied for optimal estimation in the least 

mean-squared-error sense. This condition is generally 

referred to as the Wiener-Hopf integral equation. He also 

developed the solution for the case of a time invariant sys- 

tem with stationary noise processes. This work and further 

extensions and modifications by others are known as Wiener 

filters. 

In the Wiener filter, the measurement information is 

acknowledged to have a signal and a noise component. The 

filter, which is usually implemented as a linear analog 

filter, is designed so that the noise component of the 

measurement is more heavily attenuated than the signal com- 

ponent, thus allowing extraction of as much information from 

the measurement as is possible. However, non-time stationary, 

transient, or multiple input-output problems are difficult 

to solve by the Wiener approach. 

Kalman (Ref. 16) treated the estimation problem from a 

different point of view and formulated the equivalent of the 

Wiener-Hopf integral equation as a vector-matrix differential 

equation in state space. He developed the solution for a 

linear system with normally distributed noises as a set of 

vector-matrix difference equations which are commonly termed 

the "Kalman filter." Information about the dynamics of the 

process being measured, statistics of the disturbances 
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involved, and a priori knowledge of the quantities being 

estimated are included in the formulation of the problem. 

In the Kalman filter, the estimation proceeds from any 

chosen starting time and is well suited for situations 

dominated by a transient mode, such as the launching of a 

space vehicle. In the steady state, the Kalman filter can 

be shown to be equivalent to a Wiener filter and thus can be 

considered as a more general formulation of the estimation 

problem. Further advantages of the Kalman filter are that 

the computations are performed recursively, in the time 

domain, and are readily applicable to nonstationary and 

multiple input-output systems. In the standard formulation 

of the Kalman estimation procedure, allowance is made for a 

variation of the noise variances with respect to time. 

However, this knowledge is assumed to be known prior to the 

actual filter operation. In an operational situation, the 

time varying filter gains can be precomputed and stored in 

the filter to be used in conjunction with the measurement 

information to obtain the optimal estimate. As an estima- 

tion procedure of the first degree of sophistication, i.e., 

with the consideration of the noise variances, this is indeed 

a very powerful and generally applicable procedure. 

Kalman filtering can be thought of as a method of com- 

bining in an optimal fashion all information up to and includ- 

ing the latest measurement to provide an estimate at that 

time. The proper weighting to apply to the new measurement 

is determined by the relative "quality" of the new information 

as compared to the information contained in the estimate 

before the latest measurement. Poor measurements will receive 
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less weight than good ones. If there is noise driving the 

system between measurement times, the filter will weight the 

extrapolated value of the old estimate less than if there 

were no noise. This is because noise introduces an uncer- 

tainty in the state of the system between measurement times. 

Consequently the estimate will depend less upon old estimates 

and more upon new measurements. The appropriate measures of 

the "quality" of the old estimate and the new measurement 

are respectively the covariance of the old estimation error 

and the covariance of the new measurement error. 

These important points can be clarified by considering 

the following simple example. 

state of a system at time "n." If the system can be described 

Let xn represent the scalar 

by a linear differential equation, then the state at time lln'l 

can be related to the state at time 'In-1" by the difference 

equation 

x =  n CP (n,n-1) X n-1 + rn wn 

CP(n,n-1) is the state transition matrix and extrapolates 

the state from time n-1 to time n if the effects of wn are 

is the "forcing function matrix" and w is the ignored. rn 
state "driving noise" which is assumed to be a zero mean 

uncorrelated normally distributed noise with variance Qn. 

Let xn 1 n-1 n 
processing n-1 measurements and let Pnln-l represent the 

variance of the estimation error after n-1 measurements. 

n 

A 

represent the estimate of x obtained after 
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The measurement at time n is given by 

+ v  z n = Hn xn n 

where vn is additive noise representing the error in the 

measurement and Hn is the "observation matrix'' which relates 

the measurement to the state. 

and Hn = 1. 

lated normally distributed noise with variance Rn . 

In this example, z n is a scalar 

It is assumed that vn is a zero mean uncorre- 

The scalar Kalman filter equation for incorporating 

this new measurement into the state estimate is given by 

The variance of the estimation error after incorporation of 

the new measurement is given by 

A 

If the state estimate xnIn - 
the information contained in zn, then 

is very good compared with 

A A 

and thus X " X  nln nln-1 

and 
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In this case, the measurement datum is effectively rejected 

because it is so noisy that it is virtually useless. Since 

no new information has been added, the variance of the esti- 

. mation error remains the same after the measurement. 
A 

In the other extreme case, suppose x is of very n I n-1 
poor quality compared with the information contained in zn. 

Then : 

and thus 

and 

A 

X " 2  nln n 

P nln Rn 

A 

In this case, the estimate xnlnml is effectively rejected and 

the estimate x 

In all cases falling between these two extremes, the estimate 

X 

A 

is based upon the single measurement zn. 
nln 

A A 

is a linear combination of the old estimate xnln - and 
nln 
the new measurement zn. 

Before computing the proper 

above, the variance of the state 

weighting factors given 

estimation error before the 

measurement at time n must be found. This can be done by 

studying how the actual state changes between time n-1 and 

time n and how the state estimate changes in this same time 
A 

be the estimate of the state xn - Let Xn-l I n-1 interval. 

after the measurement at time n-1. Since w is a zero mean 

independent random variable, the best estimate of the- state 
n 
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at time n based upon the n-1 measurements is given by 

X = @(n,n-l) n I n-1 n-1 I n-1 X 

represents the covariance of the estimation If 'n-11 n-1 
error at time n-1, it can be seen that 

+ 'n-1 I n-1 r i  Qn 

A large driving noise variance will cause a large increase 

in the mean squared error in the estimate when it is extra- 

polated from one measurement time to the next. 

The filter equations given above are for the case of 

a scalar state and measurement. In Chapter 2, the more 

general case of a vector state and measurement is treated. 

However, even in more complicated situations, the same inter- 

pretation can be applied to the operation of the filter. 

The primary purpose of the filter is to compute and apply 

the proper weighting factors so that the new measurement 

information can be incorporated with an old estimate of the 

state to provide a combined and improved state estimate. 

Precise knowledge of the measurement and driving noise 

statistics is of fundamental importance in the operation 

of a Kalman filter. However, in any operational situation, 

the statistics of the noises that are used in the filter 

are in fact only estimates or predictions of the statistics 

of the noises that will actually be encountered. In some 

cases these estimates might be quite accurate, but in other 
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cases they  may be s u f f i c i e n t l y  i n  error t o  adve r se ly  a f f e c t  

t h e  f i l t e r .  One e f f e c t  of t h i . s  can be a l a r g e  d iscrepency  

between t h e  s t a t e  e s t i m a t i o n  e r r o r  cova r i ance  ma t r ix  a s  com- 

puted w i t h i n  t h e  f i l t e r  and t h e  " a c t u . a l "  s t a t e  e s t i m a t i o n  

e r r o r  cova r i ance .  I f  t h e r e  i s  a d i f f e r e n c e  between t h e  com- 

puted  and a c t u a l  cova r i ance  .s,t t h e  o l d  s t a t e  es t imate ,  t h e  

f i l t e r  can make an e r r o r  i n  computing t h e  weight ing f o r  a 

new measurement, T h i s  s u b j e c t  i s  t r e a t e d  f u l l y  i n  Chapter 2 

b u t  it can be understood by c o n s i d e r i n g  t h e  fo l lowing  

example. 

Suppose t h a t  it i s  assumed that t h e r e  i s  no n o i s e  

d r i v i n g  t h e  s ta te  when in, f a c t  d r i v i n g  n o i s e  i s  p r e s e n t ,  

Then t h e  computed cova r i ance  of t h e  s t a t e  e s t i m a t i o n  e r r o r  

w i l l  g e n e r a l l y  be s m a l l e r  than  t h e  a c t u a l  e s t i m a t i o n  e r r o r  

covar iance .  This  i s  because the  d r i v i n g  n o i s e  i n t r o d u c e s  

an  e r r o r  i n  e x t r a p o l a t i n g  t h e  s t a t e  es t imate  from one measure- 

ment t i m e  t o  t h e  nex t  which is not  accounted f o r  i n  t h e  

computed s t a t e  e s t i m a t i o n  e r r o r  cova r i ance  ma t r ix .  The f i l t e r  

" t h i n k s "  i t  is doing a b e t t e r  Job of e s t i m a t i n g  t h e  s t a t e  

t h a n  i s  a c t u a l l y  t h e  ca . seo  I f  t h e  f i l t e r  t .hinks t h e  o l d  s t a t e  

e s t i m a t e  i s  much b e t t e r  than  i t  a c t u a l l y  i s ,  it may a s s i g n  

l i t t l e  weight  t o  new measurement in fo rma t ion  and t h u s  

e f f e c t i v e l y  d i s c a r d  t h i s  new in fo rma t ion , ,  O f  c o u r s e l  t h i s  

i s  e x a c t l y  t h e  wrong t h i n g  t o  do,  The o l d  s t a t e  estimate may 

be  of v e r y  poor qua1i t .y  so t h a t  t h e  new measurement fnforma- 

t i o n  should  be weighted q u i t e  h e a v i l y .  However, i n  i t s  igno- 

r ance ,  t h e  f i l t e r  f a i l s  t o  do t h i s  and a s  a r e s u l t  t h e  a c t u a l  

e s t i m a t i o n  error may become ve ry  l a r g e  wh i l e  t h e  f i l t e r  

m-- 
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"thinks" it is doing a good job of estimating the state. 

A similar problem can arise in the case of vector mea- 

surements. If the relative quality of the different measure- 

ments is not well known, then more weight might be given to 

a measurement taken with an inaccurate instrument than to a 

very accurate one. This would lead to a greater estimation 

error than would be the case if the relative accuracy of the 

different measurements was known and the proper weighting 

assigned to each. 

A priori estimates of the statistics of the noises can 

be obtained in several ways. They may be no more than 

educated guesses as to what noise environment may actually 

exist, It is often very difficult to predict with accuracy 

the operating conditions of a complicated and interrelated 

system, especially in research and development applications 

when little may be known before an experiment is conducted. 

Another technique for obtaining the statistics of the 

noises is the analysis of previous experiments. These 

experiments may have been conducted in an operational envi- 

ronment or in the controlled environment of a laboratory. 

In either case, it is rarely possible to have complete 

confidence in the estimates of the noise statistics due to 

the necessarily finite number of experiments that can be 

performed and possible problems associated with the inability 

tb isolate and distinguish the various effects of the different 

noises. And there is still a question as to whether the envi- 

ronment will remain constant between the time these estimates 
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of the statistics are obtained and when the estimates are 

subsequently used in the Kalman filter. 

Thus in many situations, the assumption that the a priori 

estimates of the statistics of the measurement and driving 

noises are good estimat.es may not be justified. The primary 

objective of this work is to develop an optimal estimator of 

the state that remains optimal when the statistics of these 

noises are not precisely known a priori. In the process of 

estimating the state under these conditions, optimal estimates 

of the measurement and driving noise statistics are also 

obtained. 

In developing optimal estimators for the state and noise 

statistics, it is not assumed that the statistics of the 

noises are known precisely a priori. Instead, it is assumed 

that the uncertainty in knowledge of these statistics has a 

particular distribution about some a priori value. This is 

completely analogous to the usual assumption made in Kalman 

filtering that the initial state of the system is not known 

precisely, but rather the uncertainty in knowledge of the state 

can be described by a suitable probability density function. 

In both cases, it is assumed that the distribution of the 

uncertainty is known a priori. This represents the second 

degree of sophistication is estimation procedures. It 

reduces by one level the necessary specification.of the values 

of the noise statistics. Instead of having to specify their 

exact values, all that need be specified is the possible dis- 

tribution these values might have, In fact, it will subse- 

quently be shown that the exact shape of this distribution is 
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r e l a t i v e l y  unimpor tan t  when a large number- of measurements 

has  been t aken .  

The above d i s c u s s i o n  can be c l a r i f i e d  by c o n s i d e r i n g  t h e  

fo l lowing  s imple  example. I t  w i l l  be shown- tha t  t h e  a p r i o r i  

estimates o f  t h e  n o i s e  s ta t i s t ics  can be  improved a t  t h e  same 

t i m e  t h a t  t h e  s ta te  i s  be ing  e s t i m a t e d .  A l l  measurements 

c o n t a i n  s o m e  i n fo rma t ion  about  t h e  n o i s e s  as w e l l  as t h e  

s ta te ,  whether t h e s e  measurements are t aken  i n  t h e  l a b o r a t o r y  

o r  i n  an o p e r a t i o n a l  environment.  So a procedure  can be 

dev i sed  t o  u t i l i z e  t h i s  i n fo rma t ion  about  t h e  n o i s e s  a c t u a l l y  

encountered t o  improve ou r  knowledge of  t h e  n o i s e  s t a t i s t i c s .  

Suppose t h e  s t a t e  t h a t  i s  t o  be estimated i s  a t i m e  

i n v a r i a n t  scalar and t h e  measurements of t h e  s t a t e  are g iven  

by 

z = x + v  n n 

where x i s  t h e  c o n s t a n t  s t a t e  and vn i s  a z e r o  mean indepen- 

d e n t  normally d i s t r i b u t e d  measurement n o i s e  wi th  t i m e  i n v a r i -  

a n t  v a r i a n c e  R. I f  a s i n g l e  measurement is t aken ,  t h e  opt imal  

estimate of t h e  s t a t e  x i s  g iven  by 

and t h e  v a r i a n c e  of t h e  s t a t e  e s t i m a t i o n  error i s  g iven  by 
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If repeated measurements are performed, it is easy to show 

that the optimal estimate of the state after the nth measure- 

ment is given by 

n 

j=1  

and the variance of the state estimation error is 

Thus increasing the number of measurements decreases the 

variance of the estimation error by the factor (l/nl0 Note 

that in this simple example, the measurement noise variance 

is not needed to define the optimal estimate of the state, 

This is a consequence of the fact that if the actual measure- 
1 

ment noise variance is assumed to be time invariant, and if 

there is no a priori information about the state, then all 

measurements are given the same weight, regardless of the 

actual value of R. However, the variance of the state 

estimation does depend upon the actual value of R as given 

above. In more complicated situations, such as vector mea- 

surements or when there is noise driving the state, the 

optimal state estimate does depend upon the relative sizes of 

the noise covariances involved. But in this case, only the 

variance of the state estimation error depends upon R. 

If the value of R is unknown, its value can be estimated 

from the measurements themselves. In the above case, when the 

true state is time invariant, an estimate of R can be defined 



n 

where 

and 

so 

and 

j=1 

It is easy to show that such an estimate is an unbiased 

estimate of the noise variance. The expected value of R 

is given by 

h 

n 

A A 

1 21 nln 
&(Rn) = - n- 1 

j=1 

where E (  ) represents an average over the ensemble of all 

possible measurement noises with covariance R. It can be 

seen that 

A 
2, 
X = x  - x  nln nln 

n 

k 
2, 
X nln n 

k= 1 
n n n 

Vk vs - vj Vk 
A 2 2 1  ( z j - x  = v  + - - 2  
nln j n  - 

k = l  s= l  k=l 

R E [ ( z ~ - x  ) ] = R + - R - - R = -  2 1 2 n-1 * 

nln n n n 

In obtaining the above expression, use was made of the indepen- 

dence of the measurement noises at different times. Then 

n 

j=1 
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It can be 

error is given 

shown that the variance of the R estimation 

by 

2 2 R2 A 

E[(Rn - R) ] = - n- 1 

Thus as the number of measurements increases, the variance of 

the noise variance estimation error becomes small and R 

becomes an arbitrarily good estimate of the actual measurement 

noise variance. 

A 

n 

With an estimate of R, an estimate of the state estima- 

tion error variance can he obtained. 

I - -  - R  
n J n  n n P 

As was mentioned before, in most cases some estimate of the 

measurement noise variance is available before the above 

measurements are taken. Suppose an estimate of R is obtained 

from a series of measurements and it differs from an a priori 

value obtained by some other means. Now the question is which 

value more accurately represents the variance of the measure- 

ment noise, the a priori value or the value obtained from the 

measurements. The concepts of relative weighting discussed 

in connection with Kalman state estimation offer a solution 

to this problem. 

There is usually some measure of accuracy associated 

with the a priori estimate of R. This measure is often the 

variance of possible deviations of the actual value of R 

about the a priori estimate. If it is felt that the a priori 
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estimate is highly accurate, the variance about the true 

value would be small. Conversely, if it is felt that the 

a priori estimate of R is highly inaccurate, the variance 

about the true value of R would be large. 

A combined estimate of the measurement noise variance 

can by defined by 

A 

RZ = 

2 

n a R  

u 2  + u 2 

Rn RO 

A 

Ro + 

2 
0 

RO - 

2 u 2  + u 
Rn RO 

h 

A A 

where Ro is the a priori estimate of R, R 

obtained from the measurements, uR 

true value of R about the a priori estimate, and u 2  

variance of the true value about the estimate R . u is 

given by 

is the estimate 

is the variance of the 
n 

0 
is the 

Rn 
Rn 2 A 

n 

2 2RL 2 
R n-1 

A 

CT = €[(Rn - R) ] = - 
n 

In order to compute o2  , the true value of R must be known. 
However, for moderately large n, the approximation can be made 

Rn 

By analogy to the state estimation problem, a measure 

of the variance of the combined estimate of the measurement 

noise variance is given by 

ORC = 
n 

2 

2 2 
O R  OR 

CT 
Rn 

0 n 

2 

0 
OR 
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A 

If the a priori estimate Ro is of high accuracy compared 
h 

with Rnl then 

and thus 

and 

h h 

RZ = Ro 

2 2 o c = o  
Rn RO 

If the a priori estimate is of low accuracy compared 
A 

with Rnl then 

2 2 

* RO ” *Rn 
c h  h 

and thus Rn = Rn 

and 2 2 * c = *  
Rn Rn 

In all cases falling between these two extremes, the 
A 

estimate RC is a linear combination of the a priori estimate 

and the estimate obtained from the measurements. 
n 

Of course, the situation is not always as simple as in 

the previous example. 

with additive driving noise. 

indicating that several measurement devices of possibly 

differing accuracies are used to measure the state at any time. 

In such cases, the problem is simultaneously estimating the 

state and the noise covariances becomes much more complicated. 

The state may be a time-varying vector 

The measurements may be vectors 
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The resulting equations for optimal estimates of the state 

and noise statistics are generally coupled nonlinear equations 

that must be solved by some numerical procedure. But the 

essence of the problem is the same. From the information con- 

tained in the measurements taken in an operational environ- 

ment, improvements can be made in the estimates of not only 

the state but also the statistics of the measurement and 

driving noises. 

such a situation can be improved compared with the estimator 

that uses incorrect values of the noise statistics in com- 

puting the appropriate filter gains. 

The performance of the state estimator in 

Optimal state estimation when the statistics of the 

measurement and driving noises are poorly known is but one 

class of problems within the more general area of state esti- 

mation in the presence of "modeling errors." In the formula- 

tion of the Kalman filter, it is assumed that the dynamics of 

the system can be accurately modeled as a set of linear 

differential or difference equations with precisely known 

coefficients. This is reflected in the value of the state 

transition matrix that is used to extrapolate the state 

estimate from one measurement time to the next. In fact, 

the modeling of the system might involve approximations. 

The number of state variables that are necessary to accurate- 

ly model the system might be so great that the number of 

computations needed to estimate all of the variables becomes 

prohibitively large. Often the number of computations can be 
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1~~~ i n c l u d i n g  o n l y  the m o s t  s i g n i f i c a n t  s ta te  var i -  

a b l e s  i n  t h e  f i l t e r  model. T h i s  w i l l  reduce t h e  complexity 

of t h e  f i l t e r  b u t  can i n t r o d u c e  a d d i t i o n a l  errors i n  t h e  

e s t i m a t i o n  of t h e  reduced number of s t a t e  v a r i a b l e s ,  

It  may n o t  be p o s s i b l e  t o  model t h e  system dynamics by 

any set ,  no matter how large,  of l i n e a r  d i f f e r e n t i a l  equa- 

t i o n s .  The motion of t h e  s t a t e  might be described by a set  

of n o n l i n e a r  d i f f e r e n t i a l  equa t ions  which can only  be 

approximated by a set  of l i n e a r  d i f f e r e n t i a l  equa t ions  

d e s c r i b i n g  t h e  motion of t h e  system about  some nominal p a t h ,  

This  too can i n t r o d u c e  errors i n  t h e  s t a t e  e s t i m a t i o n  t h a t  

a r e  n o t  accounted f o r  w i t h i n  t h e  model, 

There a r e  o t h e r  sources  of modeling e r r o r .  The elements  

of t h e  s t a t e  t r a n s i t i o n  matrices used w i t h i n  t h e  f i l t e r  may 

n o t  be a c c u r a t e l y  known. The a c t u a l  measurements may be a 

non l inea r  f u n c t i o n  of t h e  s t a t e  a l though i t  w a s  assumed i n  t h e  

d e r i v a t i o n  of t h e  f i l t e r  equa t ions  t h a t  t h e  measurements are 

a l i n e a r  f u n c t i o n  of t h e  s ta te .  These n o n l i n e a r i t i e s  may n o t  

be h i g h l y  s i g n i f i c a n t  b u t  t hey  can cause a d d i t i o n a l  s t a t e  

e s t i m a t i o n  e r r o r s .  

A l l  of t h e s e  "modeling e r r o r s , "  i nc lud ing  i n a c c u r a t e l y  

known n o i s e  s t a t i s t i c s ,  can r e s u l t  i n  a degrada t ion  of t h e  

Kalman f i l t e r  performance. 

Many a u t h o r s  have s t u d i e d  t h e  problem of opt imal  es t i -  

ia t ion  and c o n t r o l  of a l i n e a r  p l a n t  whose parameters  may 

o t  be a c c u r a t e l y  known. A comprehensive l i s t  of  r e f e r e n c e s  

I t h i s  s u b j e c t  would be p r o h i b i t i v e l y  long.  For t h i s  

$ason, t h e  on ly  works c i ted  h e r e  are those  t h a t  have some 
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bearing on the problem of optimal state estimation in the 

presence of modeling errors. 

Spang (Ref. 3 4 )  has studied the problem of optimal 

control of a linear plant with unknown coefficients under 

the assumptions that there is no measurement noise and the 

statistics of the noise driving the state are precisely 

known. He also assumes that the uncertainty in knowledge 

of the coefficients describing the plant have some distribu- 

tion of values that can be represented by a probability 

density function of coefficient values. The optimal control 

signal which minimizes a quadratic error measure is obtained 

by finding the conditional mean of the system tracking error, 

conditioned upon the actual measurements of the system but 

averaged over the distribution of all possible plant 

coefficient values. In this way, the error is minimized 

over the ensemble of all possible trials with systems whose 

parameters vary in a fashion described by the assigned proba- 

bility density function. No attempt is made to estimate the 

actual plant coefficients. Although Spang is concerned 

primarily with optimal control, several of the concepts he 

develops have direct application to optimal state estimation 

when the parameters of the system are unknown. 

Drenick (Ref. 8) has also studied this problem. He 

also assumes that the uncertainty in the parameters of a 

linear plant can be described by a probability density 

function whose first two moments are known. His optimal 

control signal minimizes the conditional mean squared 

tracking error and is a function of the measurements on the 

2 0  
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system and the first two moments o f . t h e  parameter distribu- 

tions. However, using his procedure, there is no way to 

estimate the values of the unknown system parameters except 

in a very restricted set of problems. 

Magill (Ref. 21) takes an interesting and rather unique 

approach to the problem of optimal state estimation when 

certain statistical parameters oE the problem are unknown. 

These parameters, called the parameter vector, are assumed 

to come from a finite set of values that are known a priori. 

The optimal estimator is composed of a set of Kalman type 

state estimators, with each filter using one of the finite 

number of parameter vectors to compute the proper measure- 

ment gains. The outputs of the filters are weighted and 

added, with the weighting of each filter output being deter- 

mined by the conditional probability that the parameter 

vector being used in that filter is the true parameter vector. 

These conditional probabilities are functions of the mea- 

surements and are obtained by relatively simple but nonlinear 

calculations. 

The following works are primarily concerned with 

obtaining relatively simple and easy-to-use procedures rather 

than finding an "optimal" solution to the problem. The 

approaches to the problem are quite different but there is 

one common feature. This feature is the real time examina- 

tion of measurement residual's to determine if a Kalman type 

state estimator is performing as predicted. The measurement 

residual is defined as the difference between an actual 

measurement and the predicted measurement, this prediction 
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being based upon the predicted state at the time of the 

measurement. If the measurement at time n is given by 

z = Hn xn + vn n 

* 
is the estimate of the state x before the and xn I n-1 n 

measurement z then the measurement residual is defined by n' 

Azn = z n 
A - 

Hn Xnln-l 

If there are no modeling errors, it is easy to show that 

Azn is a zero mean random variable with covariance 

where Rn is the covariance of the measurement noise v 

'n j n-1 
the nth measurement. 

and n' 
is the covariance of the state estimation error before 

Jazwinski (Ref. 15) has suggested introducing into the 

model of the dynamics of the system a zero mean random driving 

noise which in some sense can account for the effect of any 

modeling error. However, the covariance of this noise is 

not known a priori since it is not known what modeling 

errors are actually present. Jazwinski proposes a simple 

and reportedly effective procedure for determining how much 

"driving noise'' to introduce into the model based upon an 

examination of a single residual at a time. If the squared 

residual is much larger than predicted by the filter, the 
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computed covariance of the old state estimate is artificially 

increased at that time so that the new measurement is 

weighted more heavily than would be the case if no adjustment 

was made. In this way possible divergence problems in the 

filter are minimized because as soon as the residuals become 

large, indicating that there is an error in the model, the 

measurements are weighted heavily. This tends to reduce the 

estimation error to a level consistent with that predicted 

by the filter. 

No attempt is made to estimate the value of the 

covariance of the added driving noise since in fact it does 

not exist. It was included to account for any unknown 

modeling errors. Even if the covariance is estimated, 

such an estimate would have little statistical significance 

since it would be based upon an examination of a single 

measurement residual. So Jazwinski's procedure should be 

viewed as an attempt to reduce the effect of modeling errors 

on the filter operation rather than an attempt to improve 

our knowledge of the model. 

Dennis (Ref. 5) addresses himself to a more compli- 

cated problem, that of estimating the effects of errors in 

modeling the dynamics of the system as well as estimating 

the covariances of the measurement and driving noises. Only 

his procedure for estimating the statistics of the noises is 

of interest here. 

Dennis develops expressions for a real time estimator 

of the measurement and driving noise covariances. The 

estimates are subsequently used in the computation of the 
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appropriate weighting gains in a Kalman state estimator. 

Dennis' solution for the estimation of the noise statistics 

is suboptimal in the sense that no optimality criterion is 

used in defining these estimates. The expressions were 

obtained by an examination of the characteristics of quadratic 

functions of certain measurement residuals. From this 

examination a reasonable, if not optimal, estimator is 

postulated. However, in many useful applications there are 

several problems associated with the use of this estimator. 

It is not always possible to estimate all of the unknown 

elements of the measurement and driving noise covariance 

matrices. Depending upon the dimension and nature of the 

measurement, some or all of the elements of the driving 

noise covariance may not be observable, and as a result, a 

singular situation is created. There are also certain 

situations when the estimators may be biased and result in 

estimates that do not converge to the true values of the 

noise covariances as the number of measurements becomes 

large. Dennis does not develop expressions for the evalu- 

ation of the quality of the noise covariance estimates. Such 

measures of quality would be needed if it is desired to 

incorporate the estimates obtained from the measurements 

with some a priori estimates to obtain a combined estimate 

based upon a priori knowledge of the noise covariances and 

the information contained in the measurements. 

Shellenbarger (Ref. 31) is exclusively concerned with 

estimating the values of the measurement and driving noise 

covariances so that the proper gains can be computed for 
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estimating the state. His technique is aimed at finding an 

approximate solution to this problem and consequently his 

estimator for these parameters is suboptimal. He bases his 

estimates of the noise covariance parameters upon an examina- 

tion of a single measurement residual at a time, If the 

measurement is of small dimension compared with the number 

of covariance parameters being estimated, there is no 

unique solution for all of the noise covariance parameters. 

In addition to this, there is also a question of a possible 

bias in the noise covariance estimator, 

The work of Smith (Ref. 3 3 )  is even more restricted in 

that he attempts to estimate only the measurement noise 

covariance, assuming that the dynamical model of the state 

and the covariance of the driving. noise are known precisely. 

His work results in a suboptimal estimator for the state 

and measurement noise covariance. Here too there is a 

question of a possible bias in the noise covariance estimator. 

Because of the relevance of noise covariance estimation 

to this work, a short review of the procedures of Dennis, 

Shellenbarger, and Smith is included in Chapter 4, Although 

their procedures axe suboptimal and there are problems asso- 

ciated with implementing their estimators in certain cases, 

it is felt that there are some situations when these estimators 

provide an adequate solution to the problem of inaccurately 

known noise statistics. Their procedures are much simpler 

that the optimal procedures developed in Chapter 3 and provide 

some insight into the variety of techniques that are available 

for an approximate solution to the problem. 
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.. .... .._ ._.. 

1.3 Summary of Thesis -- 
As was previously mentioned, the primary objective of 

this thesis is the development of an optimal estimator of 

the state and statistics of the measurement and driving 

noises. However, several other related subjects are also 

treated. 

In Chapter 2, it will be shown that a biased or corre- 

lated measurement or driving noise can be estimated using 

a linear recursive filter identical in form to the usual 

Kalman filter for estimating the state. This is a conse- 

quence of the fact that such a biased or correlated noise is 

observable in terms of a linear function of the measurements. 

It will also be shown that an error in the values of the 

measurement and driving noise covariances used to compute 

Kalman filter gains does not produce an observable effect 

in a linear function of the measurements. Therefore, any 

estimator of these covariances is inherently a nonlinear 

estimator since a nonlinear function of the measurement is 

needed in the estimation loop. In the simple example given 

previously, it was shown that an estimator for the measure- 

ment noise variance is a quadratic function of the measurements. 

Initially an attempt was made to formulate the problem 

of noise covariance estimation in terms of minimum variance 

estimation, but the nonlinearities in the problem immediately 

produced great analytical difficulties. This is one of the 

reasons why the criterion of maximum likelihood was chosen 

to define the optimal estimates of the state and the noise 

statistics. As the name might imply, maximum likelihood 
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estimates are the most probable values of the state and 

statistics for a given set of measurements. The techniques 

of maximum likelihood result in complicated equations, but 

the theory of maximum likelihood estimators is sufficiently 

developed to allow a proper handling of the problem. 

The points of maximum likelihood are found by setting 

the derivatives of a suitable Likelihood function to zero 

and then solving the resulting equations for the unknown 

parameters. There is a likelihood equation associated with 

each parameter being estimated. When the noise covariance 

matrices are assumed to be time invariant, the solution of 

the likelihood equations for the optimal state estimate is 

just a Kalman type estimator which uses the optimal estimates 

of the noise covariances to compute the appropriate filter 

gains. Unfortunately, there is no general closed form 

solution of the likelihood equations for these optimal noise 

covariance estimates. However, an iterative procedure is 

proposed for the solution of the likelihood equations corre- 

sponding to the estimates of the noise covariances. These 

estimates are shown to be asymptotically unbiased, efficient, 

consistent, and unique, with the estimation error normally 

distributed with a known covariance, 

In addition to the optimal solution discussed in 

Chapter 3 ,  several suboptimal solutions of the problem are 

given in Chapter 4. These solutions can result in a major 

savings in the computational requirements but they do not 

have the wide range of applicability of the optimal solution. 
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Chapter 5 is devoted to a discussion of hypothesis testing. 

Hypothesis testing is closely related to the estimation problem. 

Certain criteria are developed for making decisions as to 

whether observed measurements are consistent with assumptions 

about the statistics of the measurement and driving noises. 

However, the tests themselves do not allow a determination of 

the reasons the measurements fail a particular hypothesis 

test, but rather indicate that there is some error in the 

model of the system and/or measurement. The tests can 

usually be conducted at less computational expense than a 

more complicated noise covariance estimation procedure, so 

they can be used to determine if such additional estimation 

should be conducted. 

In Chapter 6 ,  the numerical results of a computer simu- 

lation of the theoretical results are presented. The optimal 

and suboptimal estimators are simulated to study their perfor- 

mance in a simple but realistic situation. The techniques 

of hypothesis testing are also studied to find the power of 

certain tests in detecting errors in the values of the noise 

statistics used within a Kalman filter. 
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Chapter 2 

EXPECTATION OPERATORS AND 

MAXIMUM LIKELIHOOD ESTIMATION 

2 . 1  Introduction - 

In this chapter two types of expectation operators are 

defined and maximum likelihood parameter estimation discussed. 

A precise understanding of the expectation operator notation 

is necessary for subsequent work, so important definitions 

and results are given here. The maximum likelihood equations 

are utilized to establish the notation and results of the 

familiar linear state estimation problem with and without 

the use of a priori information about the state. The question 

of unbiasedness and the covariance of the state estimate in 

the presence of inaccurately known noise statistics is also 

discussed. More general parameter estimation problems and a 

more detailed examination of the properties of maximum likeli- 

hood estimators are treated in Chapter 3 .  

2.2 Conditional and Unconditional - - Expectation -~ Operators - - -  -. . 

Let x and y be random variables (possibly vector valued) 

with joint probability density function f(x,y) defined over 

the range -00 < x,y < a. The conditional expectation, or mean, 

of x, conditioned upon the value of y is defined by 

J -00 
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where f ( x 1 y )  i s  t h e  c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  

of x given y.  Define 

Applying Bayes' r u l e ,  

The u n c o n d i t i o n a l  e x p e c t a t i o n  of x i s  d e f i n e d  by 

(2 .2 .2 )  

( 2 . 2 . 3 )  

The f i rs t  e x p e c t a t i o n ,  ~ ( x l y ) ,  i s  t h e  expected v a l u e  of 

x i f  y w e r e  f i x e d  a t  t h e  cond i t ioned  v a l u e .  I t  i s  found by 

averaging  over  a l l  o ther  random i n f l u e n c e s  w i t h  a c o n s t a n t  

v a l u e  of y .  The second e x p e c t a t i o n ,  E ( x ) ,  i s  t h e  expected 

v a l u e  of x which r e p r e s e n t s  a n  average  over  t h e  d i s t r i b u t i o n  
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of y as well as over all other random influences. 

The conditional covariance of x is defined by 

T cov(xly) 4 E((X - E(XIY))(X - E(XIY)) ly) 

T T = E(X x ly) - E(XIY) E ( X  ly) 

The unconditional covariance of x is defined by 

T cov(x) 4 E((x - E(xj) (x - E(x)) ) 

T T 
= E(x x ) - E(x) E(x ) 

(2 .2 .4 )  

(2 .2 .5 )  

T B u t  E(cov(x1y)) = E(x x - E(E(x\Y)E(x~\Y)) 

s o  coV(x) = E(cov(x1y)) + cov(~(xly)) (2.2.6) 

Thus the unconditional covariance can always be decomposed 

into the sum of two components: 1) the average conditional 

covariance and 2) the covariance of the conditional average. 

The use of the conditional and unconditional expection 

operators in this work is somewhat unconventional because the 

random variables y may represent the parameters of the 

probability density function of x. It is not usual to think 
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of the parameters of a probability density function as them- 

selves being random variables. However, in situations where 

it is desired to estimate the values of these parameters on 

the basis of observed values of a random variable x, by con- 

sidering y to be a random variable any a priori information 

about the value of y can be utilized coherently in forming an 

a posteriori estimate of the value of y. It may not seem 

legitimate to regard the value of y as itself being the 

outcome of a random experiment. Usually it is more natural 

to regard y simply as a fixed, though unknown, constant which 

appears as a parameter in the x distribution from which sample 

values are taken. However, if this approach is used, there 

is no way to utilize a priori information about y and accord- 

ingly the performance of the estimator would be degraded. 

- -  

In the extreme case when no a priori information about y 

exists, then introduction of the concept of an initial 

distribution for y would be unjustified and of no practical 

use, In the other extreme case when it is assumed that the 

parameters are known precisely a priori, then the probability 

density function of y would reduce to impulses at the known 

values of the parameters. However, in such a situation, in 

the absence of any other random influences on y, there would 

be no need for the entire estimation process since it is 

assumed that the values of y are known. In all cases falling 

between these two extremes, by introduction of a realistic if 

not precisely correct density function for y, the realities 

of the situation can be more closely modeled than by consid- 

ering that the parameters y are either exactly known or 
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completely unknown a priori. 

The above discussion can be illustrated by a simple 

example. Let x by a normal variable with mean m and variance 

s, with conditional probability density function f(xlm,s). 

Furthermore let m and s be random variables with a joint 

probability density function f(m,s). 

assumed that s and m are independent, so f(m,s) = f(m) f ( s ) .  

For simplicity it is 

The conditional mean of x is 

But f(xlm,s) = 1 e - 1 / 2 [ ~  - m) 2 / s ~  
(2lTs) 1’2 

so E(xlm,s) = m independent of s 

The unconditional mean of x is 

A -  m f (m) dm = m 

The conditional variance of x is 

The unconditional variance of x is 

m 

E((x - m)2 )  = // E((X - m) - 2  Im,s) f(m,s) dm ds 
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= Jf (s + m2 - E2) f(m) f (s) dm ds 
-00 

- - 2 -2 = s + m  - m  

where - A  s f ( s )  ds 

_I 

2 -2 2 2 
- Note that E((x - 5)  ) # E((x - m) ) unless m = m . 

2.3 Maximum Likelihood State Estim.ation 

In this section the theory of maximum likelihood estima- 

tion is discussed and applied to the estimation of the state 

of a linear dynamical system which is driven by white noise 

and observed by linear noisy measurements. 

relative simplicity of the equations for determining the state 

estimate, much can be said about the performance of the 

estimator. In more complicated situations, such as estimating 

Because of the 

the covariancc of the measurement and driving noises, 

evaluation of the estimator behavior is considerably more 

difficult and requires a more thorough analysis. 

reason the discussion of these situations is deferred until 

For this 

Chapter 3 .  

Maximum likelihood estimation, as the name might imply, 

is concerned with finding the maximum of a likelihood function 

defined as a function of the parameters being estimated and 

the measurements on the system. Let Z denote the realized 

values of a set of measurements and aT = (a , a ,..,a ) be 1 2  m 
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the vector of parameters belonging to a set of all possible 

parameter values R .  Further, let f ( Z l a )  denote the conditional 

probability density function of the measurements Z given the 

value of the parameter a .  The likelihood function is then 

defined by 

l ( a ,  Z )  = f ( Z l a 1  (2 .3.1)  

The principle of maximum likelihood consists of accepting 

iT = (a', a ,.., a ) as the estimate of aT, where ^ 2  "m A 

A 

l ( a , z )  = max l ( a , Z )  
a 

(2 .3 .2 )  

A 

There may be a set of samples for which a does not exist. 

Under suitable regularity conditions on f ( Z l a ) ,  the frequency 

of such samples can be shown to be negligible. 

In practice it is convenient to work with the natural 
A 

logarithm of 1 ( a , Z )  , in which case a in (2 .3.2)  satisfies the 

equation 

A A 

L ( a , Z )  = In l ( a , z )  = max L ( a , Z )  
a 

( 2 i 3 . 3 )  

When the maximum in ( 2 . 3 . 3 )  is attained at an interior point 

of R, and L ( a , Z )  is a differentiable function of a, then the 

partial derivatives vanish at that point, so that a is a 
A 

solution of the equation 

(2.3.4) 
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Equation ( 2 . 3 . 4 )  is called the maximum likelihood equation 

and any solution of it a maximum likelihood estimate. The 

function a defined by ( 2 . 3 . 3 )  over the sample space of 
A 

observations Z is called a maximum likelihood estimator. 

If a priori information about the parameters being 

estimated exists and if the a priori uncertainty in knowledge 

of these parameters can be formulated as an a priori proba- 

bility density function for a, then.a slightly different 

likelihood function can be defined.so that this a priori 

information can be used in an optimal fashion. In such cases, 

the augmented likelihood function is defined by 

( 2 . 3 . 5 )  A 1 (a,Z) = f(alZ) 

where f(alZ) is the conditional probability density function 

of the parameters a given the measurements Z. By application 

of Bayes' rule it can be seen that 

where f(a) is the a priori probability density function of c1 

and f(Z) is the unconditional probability density function 

of Z, found by 

h 

a b  

In this case the logarithm of t-he augmented likelihood 
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function ( 2 . 3 . 5 )  is 

( 2 . 3 . 6 )  

The inclusion of a priori information about a has a tendency 

to shift the zero points of ( 2 . 3 . 7 )  towards the peak of the 

a priori parameter density function. If a priori information 

about a exists, it is usually preferable to utilize the formu- 

lation f(alZ) since this allows utilization of all informa- 

tion about the value of a ,  both from the a priori information 

and information derived from the measurements Z, However, it 

should be realized that if the assigned a priori probability 

density function of the parameters does not accurately repre- 

sent possible variations in the parameters, the performance 

of the estimator may in fact be degraded by inclusion of a 

priori information. When studying the performance of an 

estimator, there is some justification for looking first at 

an estimator which does not utilize a priori information. 

This allows determination of how effectively a given esti- 

mator extracts information $ram the measurements without 

considering how this estimate might be incorporated with an 

a priori estimate to obtain a combined estimate. 

In the derivation of the maximum likelihood state esti- 

mation equations, it is first assumed that a priori informa- 

tion about the state does exist so that the latter form of 

the likelihood function is employed. After the solution of 

3 7  
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this problem is obtained, the equations for estimating the 

state without a priori information will be given. 

Both solutions of the state estimation equations should 

more correctly be called conditional maximum likelihood 

estimates because the optimality.of such estimates is condi- 

tioned upon the assumption that the noise driving the state 

and corrupting the measurements of the state have a known 

distribution with precisely known parameters. If this 

assumption is not valid, then the state estimates are no 

longer the true maximum likelihood estimates and all guaran- 

tees of optimality are lost. 

The purpose of this section is to establish certain 

results and notation which will be needed in later chapters. 

An excellent reference on the subject of maximum likelihood 

state estimation is by Rauch (Ref. 2 6 ) .  

Let the linear dynamical system being observed be 

defined by the recursive relationship 

(6x1 vector) (2.3.8) 
i- 'k Wk x = @(k,k-l) x ~ - ~  k 

and the linear noisy observations upon the system at time k 

be defined by 

(yxl vector) k z k = H  x + v  k k  (2.3.9) 
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where Q(k,k-l) is the Bxf3 state transition matrix 

Hk is the yxB observation matrix 

rk 
wk is the nxl driving noise vector 

v is the Yxl measurement noise vector 

is the Bxq forcing function matrix 

k 

For this derivation it is assumed that vk and wk are indepen- 

dent zero mean normal random variables with known covariances 

and Qk respectively. Using the notation of Section 2.2, 

E(Vk) = E(Wk) = 0 (2.3.10) 

m m m 

E(V w.L) = 0 
k j  

E(W w - ~ )  = Q ,  6 j k ,  E (v v.~) = Rk 6 j k ,  
k I  k I  

(2.3.11) 

where 6 = 1 if j = k and is zero otherwise. 

The above conditional expectation operators are conditioned 

upon the assumed values of the means and covariances of the 

noises as well as their assumed independence. 

jk 

T T Given the vector of n measurements Z: = (zl,. . . , zn) and 
an independent a priori estimate of the initial state, maxi- 

mum likelihood estimation of the state xn is based upon 

finding the particular value of the state which maximizes the 

conditional probability density function of the state, given 

all measurements of the state. Implicit in the definition of 

the likelihood function is that all values of Rk and Q 

k = l,..,n, be known precisely, as well as the covariance of 

the a priori state distribution, the elements of the state 

transition matrices, the observation matrices, and the 

k' 

3 9  



forcing function matrices. 

the likelihood function on these parameters, some of the para- 

meters will appear as conditioning variables in the condi- 

tional likelihood function. This choice of parameters to 

thus indicate is motivated by the work of Chapter 3 ,  when the 

values of certain parameters are to be estimated. 

To indicate this dependence of 

It is convenient to work with the natural logarithm of 

the likelihood function. 

(2.3.12) 

where R and Q represent the known sequence of values 

R1ro*iRnrQ1f-*fQnr the measurement and driving noise 

covariances. 

The conditional probability density function of the state 

is found by use of Bayes' rule. 

On any one trial, the initial state xo is not a random 

variable but assumes a certain value. However, this value is 

not precisely known. To model this uncertainty in the value 

of the initial state, x is assumed to be a random variable 
0 
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1 
(over the ensemble of all possible initial conditions) having 

a normal probability density function f(xo) with mean zo and 
covariance about the mean Polo. 

to be known a priori. The a priori state estimate is taken 

to be the mean of this distribution. Because of the symmetry 

This distribution is presumed 

- 
of f(x ) about its mean, xo is also the point of maximum 

probability of the distribution. 
0 

\ 

n 

the a priori state estimate A -  
X = x  

010 0 

The averaging here is performed over the ensemble of all 

possible initial conditions and is conditioned upon knowledge 

of zo and P . 
A 010 

be the maximum likelihood estimate of xn Let xn 1 n-1 
immediately before the nth measurement and let Pnln-l be the 

conditional covariance of xn about its conditional mean x ~ ~ ~ - ~ .  
A 

n A m 

The averaging here is over the ensemble of all possible 

measurement and driving noises - and initial state conditions, 

all conditioned upon the values of R and Q. It can be shown 

that-.before the update at time n, the conditional proba- 

bility density function of xn is 

. .. .... .. . .. -.. -.- "I. I 



z = Hnxn + v  n n From ( 2 . 3 . 9 )  

Since vn is a normally distributed variable, independent of 

x and x is also a normal variable, then zn is a normally 

distributed variable with conditional mean 
n' n 

and conditional covariance 

Therefore the conditional probability density function of z n is 

and from ( 2 . 3 . 1 2 )  and (2 .3.13)  

where "constant" includes all terms that are not functions 

of xn. 

42 



The maximum likelihood estimate of x is that value of n 
x which maximizes LA or makes n n' 

= o  (2 .3 .17)  

It can be seen that 

(2 .3 .18)  T -1 T -1 a L t  A 

axn (Xn-xnln-l) 'nln-1 + (Zn-Hnxn) Rn Hn 
- = -  

Then after some manipulation, the solution of (2 .3 .17 )  is 

( 2 . 3 . 1 9 )  
A A - -1 

- ('n/n-l n n  X 
nln 

Upon using the matrix inversion lemma (see Appendix A) 

A A A 

X nln = x  nln-1 f An(Zn - Hn Xnln-l 1 ( 2 . 3 . 2 0 )  

where An - - 'nlSF-1 Hn(Rn T + HnPnln-l HT) n -' ( 2 . 3 . 2 1 )  

An is called the optimum gain to the measurement residual 

( 'n 
A - 

Hn xnl n-1) 
The conditional probability density function of xn after 

the nth measurement can be shown to be 

(2 .3.22)  
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I l1.l1l1111111111lll1l1l1ll1l1111 
h 

is the conditional covariance of x about x 
n nln 

where P 

after the nth measurement. 

-7 
nln 

It can be shown that 

A 

The necessary quantities for computing x can be 

obtained recursively from the estimate at the previous time. 
nln 

( 2 . 3 . 2 4 )  

(2 .3 .25 )  

It should be noted that the above recursive state 

estimation equations are identical to those obtained by Kalman 

(Ref. 16) using the method of orthogonal projections and 

Lee (Ref. 20)  using the method of weighted least squares. 

It is also easy to show that the state estimate is that esti- 

mate which minimizes the conditional covariance of the state 

estimation error at each stage of estimation. 

If no a priori information about the state is used, the 

logarithm of the likelihood function is defined by 

( 2 . 3 . 2 6 )  

where f(Znlxn,RIQ) is the joint conditional probability 

density function of the measurements Z given x R, and Q. n n’ 
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By application of Bayes 

f(Znlxn,R,Q) = f (Znml 

By repeated application 

n 

rule 

of Bayes' rule, it can be shown that 

(2 .3 .28)  

It can be anticipated that until a sufficient number of 

measurements have been taken, the state estimate cannot be 

defined and there is no unique solution of the likelihood 

equations 

The problem is conveniently broken into two parts, obtaining 

a minimal data set and then subsequent recursive estimation 

using the equations previously derived. A minimal data set 

is defined as the smallest set of measurements that is 

necessary to completely define the state. That is, for 

n : some no, there is no unique solution of the likelihood 

equations for the state xn. 

The derivation of the estimation equations when no 

a priori information is used is considerably more complicated 

than the case previously studied when a priori information 

was used. Only the results of the derivation will be pre- 

sented here. Fraser (Ref. 10) obtained the same equations 

given below using the criterion of minimum covariance. 
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P r i o r  t o  o b t a i n i n g  a minimal d a t a  s e t  no unique estimate 

of t h e  s t a t e  e x i s t s  so an a u x i l i a r y  v a r i a b l e  must be i n t r o -  

duced. Def ine  

= F  X '  YnIn n l n  n l n  ( 2 . 3 . 3 0 )  

( 2 . 3 . 3 1 )  

A * 
where x '  

o u t  a p r i o r i  i n fo rma t ion  and F 

q u e n t l y  d e f i n e d .  I t  can  be shown t h a t  a unique y and 

and X; I n-1 a re  t h e  s ta te  estimates ob ta ined  with- 
n l n  

w i l l  be subse- 
and Fn ln - l  A 

n l n  

nl n 
A 

e x i s t  a t  a l l  t i m e s ,  b u t  on ly  i f  F and F are 
n I n-1 

and x '  n I n-1 
Ynl n-1 n l n  A A 

of f u l l  rank and possess i n v e r s e s  do unique x' 
n l n  

e x i s t .  
* A 

n l n '  Fn ln '  Ynln-1, and Fn ln - l  Recurs ive  e q u a t i o n s  f o r  y 

can be ob ta ined  w i t h  i n i t i a l  c o n d i t i o n s  

A 

= o  Yolo 

010 
F = o  

Subsequent ly ,  

A m m 

- - S r D-'rTS Fn I n-1 - 'n n n n  n n  

( 2 . 3 . 3 2 )  

( 2 . 3 . 3 3 )  

( 2 . 3 . 3 4 )  
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- .. - .. . . ___ _ _  _. . . , 

where 

- - T -lH 
F nln Fnln-l + HnRn n (2.3.35) 

= Q,' + rTs r Dn n n n  

C ~ = S ~ D  -1 
n n n  

and F are equal to the It can be shown that Fnln-l 
nln 

inverse of the state estimation error covariance matrix 

before and after the nth measurement respectively. For 

n < n  F is singular, implying that some or all elements 

of the error covariance matrix are infinite, this in turn 
o r  nln 

implying that some or all of the elements of the state cannot 

be estimated on the basis of the measurements taken. However, 

once a minimal data set is obtained, the state estimate x' 

can be obtained from the equation below. 

A 

nln 

-1 h 

nln YnIn X' = F  
nln 

(2 .3.36)  

Subsequently, the usual state estimation equations (2 .3,20)  

and (2 .3 .24 )  can be used with the solution of the minimal 

data set (2 .3.36)  used as the initial state estimate and 

F used as the covariance of the initial state estimation 

error ., 
nln 

The solution of the state estimation problem with no 

a priori information can be thought of as the limiting case 

of the solution with a priori information as P -1 +O. In 
010 
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other words, the covariance of the a priori estimation error 

distribution becomes arbitrarily large and in the limit 

becomes infinite. This is equivalent to having no a priori 

information about the state. 

The state estimate obtained using a priori information 

can be shown to be completely equivalent to a linear combi- 

nation of the state estimate obtained without use of a priori 

information and the propagated forward initial state estimate. 

A 

X - Pnln(Pn/o nlo + F  nln x' nln 1 -1 A 
A 

X - 
nln 

(2.3.37) 

A 

where x is the combined state 
nln 

A 

x' is the state estimate 
nln 

estimate 

obtained without 

a priori information 

A 

X is the propagated forward initial state estimate 
nlo 

A A 

P is the covariance of the propagated forward 4 0  
initial state estimation error 

n 

i=l 

P is the covariance of the a priori state distribution 
010 

P is the covariance of the combined state estimation 
nln 

error 
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This result is also equivalent to setting the initial 
I\ 

and P-l respectively. 
010 

conditions on y and F 
010 010 

It can be shown that in most situations (when the state 

is completely observable by the measurements and controllable 

by the driving noise) that as n -f O D f  

in which case 

'n 

I\ 

X n 

P -l -k 0 
n nlo 

A 

+ x' 
n nln 

Thus as would be expected, for large n, the effect of any 

initial state estimate will become arbitrarily small. 

If the true values of R and Q are not known precisely, 

then the measurement information cannot be processed optimally. 

Let R and Q represent the assumed value of the sequences 

R and Q, xnln represent the state estimate after n measure- 

* * 
"*  

* * 
ments using R and Q to compute the measurement residual 

* 
gain matrices, and P represent the "computed" state 

covariance matrix. Then 
nln 

( 2 . 3 . 3 8 )  

HT) -l An - 'nln-1 n (Rn + HnPnln-l n 
* T *  * - * 

( 2 . 3 . 4 0 )  
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( 2 . 3 . 4 1 )  

( 2 . 3 . 4 2 )  

P* 

the nth measurement, conditioned upon the assumption that 

R = R and Q = Q . If this assumption is not valid, then 

P* 

matrix. It can easily be shown that the actual conditional 

covariance matrix can be computed recursively using the 

following equations. 

represents the conditional state covariance matrix after 
nln 

* * 

does not accurately represent the state covariance 
nln 

(2 .3.44)  

P represents the state covariance matrix under the 

assumptions that R and Q are used to compute the filter 

gains (2 .3.40)  while the true values of the noise covariances 

are R and Q. If the initial state covariance is presumed to 

= P . Unless R = R and Q = Q , P be known, then P 

will not be equal to P . Depending upon the values of 

R, R , Q, Q , this deviation can be very significant. Numeri- 

cal results of a computer simulation of these equations for 

* * nln 

* * * 
010 010 nln * 

nln * * 

a particular system are given in Chapter 6. 

Because of the linearity of the maximum 

equations in the state estimation problem, a 

likelihood 

strong statement 
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can be made about the distribution of the estimation error, 

From the form of the state estimation equations it can be 

seen that if the initial state distribution is normal as well 

as the measurement and driving noises, then the state estimate 

is also a normal random variable. In order to completely 

specify the distribution of the estimation error, the mean 

and covariance of the distribution must be determined. 

Conventionally, an estimator is said to be unbiased if 

over an ensemble of trials the expected value of the state 

estimate is equal to the expected value of the state. Impli- 

cit in this definition is averaging over the probability 

density functions of the measurement and driving noises as 

well as averaging over the ensemble of all initial conditions 

of the state. Even if incorrect values of R and Q are used 

to compute the measurement residual gain matrices, the 

state estimate remains unbiased in the above sense as long 

as the measurement gains are fixed numbers and are not 

random functions of the outcomes of the measurement process, 

The conditional expected value of the state estimate 

(2.3.38) can be computed recursively- 

(2 .3 .45 )  

* 
Under the assumption that A is not a random variable under 

the expectation operator, 
n 
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where 
%* "* 
X = x  - x  n ln-1  nln-1 n 

But from (2.3.41) 

(2.3.46) 

Since € ( x n )  = @(n,n -1 )  &(xnv1) 

Repeating the above procedure, it can be shown that 

* n "* 
E ( X  = E(xn) + [: ( I - A ~ H ~ )  @(i,i-1)1 E(;* (2.3.47) 

nln i=l 010 

A 

010 - xo) E(;* ) = E ( X  
010 

With 

A 

= E ( X o )  
010 

E & *  ) = 0 

and X 

010 
then 

"*  
and E ( X n l n )  = E (x,) for all n 

52 
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* * 
This result is independent of the values of R, R , Q, Q . 

The maximum likelihood state estimate remains unbaised for 
* * 

any values of R and Q , but the covariance of such an esti- 
mate is a function of these quantities as expressed by 

(2.3.43) and (2.3.44). Thus it can be seen that over the 

ensemble of trials with a11 possible initial conditions, 

measurement noises, and driving noises, the state estimation 

error is zero mean normally distributed with covariance 

for any n. 'n 1 n, 
Now the question is asked: Is the state estimate 

biased over the ensemble of trials with the same initial 

conditions? Or in other words, if the initial state were 

fixed and one averaged the estimate over all measurement 

and driving noises which might be experienced, would the 

state estimate be biased? The answer is yes if a priori 

information about the state is used and the initial state 

is different from the initial estimate. This can be shown 

in a fashion analogous to the previous work. Now all condi- 

tional expected values are additionally conditioned upon the 

value of x the initial state. From (2.3.471, 
0' 

Now 

"* 
= x  - x  

010 0 
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A *  as averaging is not performed over xo. Unless xo = x then o l o f  

The bias of the estimator is due to the use of a priori infor- 

mation in the estimator. If no a priori information is used, 

it is easy to show that 

However, even if initial information is used, as n becomes 

large the bias due to initial condition error becomes arbi- 

trarily small. On the average, x = x = x and the 

estimator is unbiased as shown before. 

- "* 
0 0 010 

But over the ensemble 

of all possible trials with the same initial conditions, the 

estimate is only asymptotically unbiased. However, the dis- 

tribution of the estimate about this possibly biased value can 

be shown to be normal for any n. 

A slightly different definition of unbiasedness is used 

in Chapter 3 in the discussion of maximum likelihood estima- 

tors of more general parameters. 

the true value of the parameters a is said to be unbiased if 

A 

There, an estimator a n of 

where a. is the true value of a. 

appropriate in situations when no a priori information about 

the parameters is used so that the parameter estimate is a 

This definition is really 
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7 
function of the measurements alone. However, the asymptotic 

behavior of the estimator will be shown to be independent of 

the a priori estimate so that this definition is useful even 

if a priori information is used in obtaining the estimate. 

Using this definition of unbiasedness, the maximum likeli- 

hood state estimate is unbiased if 

"* 
n E(X IXn) = x 

nln 

Using a procedure similar to that used to obtain (2 .3 .47 )  and 

(2 ,3.49) ,  it can be shown that 

But 

and 

"* 
Unless x 

biased. But as before, if one looks at the asymptotic 

= @(O,n)xn, the maximum likelihood estimator is 
010 

behavior of the estimator or studies an estimator which does 

not use a priori information about the state, then 

n 

and the estimator is unbiased. 
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Now the question is asked: What is the effect of 

possibPe.biases in the measurement and driving noises and 

what can be done to estimate these biases? In such a 

situation, the system state is given by the relationship 

x n = Q(n,n-l)xn-l + rn(wn + B ~ )  (2.3.51) 

where as before wn is a zero mean random variable with 

covariance Q 

constant bias independent of w n with 

with wn independent of wk for k # n. Bw is a n' 

T 2 &(BW Bw) = aB 
W 

These conditional expected values are taken over the ensemble 

of all possible driving noise bias values. 

assumed that over the above mentioned ensemble, BW is normally 

distributed with zero mean and covariance a . 

It is usually 

2 

BW 
The measucement zn is given by 

z = Hn xn + v  + B v  n n (2 .3 .52)  

where as before vn is a zero mean random variable with 

covariance Rn, with vn independent of vk for k # n. 

constant measurement bias independent of v n and the driving 

noise- bias Bw, with 

B V is a 
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€(BV) = 0 

These conditional expected values are taken over the ensemble 

of all possible measurement noise bias values. Again it is 

usually assumed that Bv is normally distributed. 

If the state xn is estimated with the effects of these 
"* 

is computed 
nln 

biases neglected, then the state estimate x 

using (2.3.38) and (2.3.41) , with the "computed" covariance 
matrix given by (2.3.39) and (2.3.42). It is assumed that 

the values of R and Q used to compute these matrices and the 

measurement residual gains are the correct values. Now 

however, the state estimate will not be an optimal estimate 

and P will not correspond to the actual state estimation 

error covariance because of the neglected biases. 

* 
nln 

From (2.3.51) and (2.3.41) it can be seen that 

Then the actual state estimation error covariance matrix 

befoEe the measurement at time n is given by 
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So in order to compute Pn 

driving noise bias B and 

must be determined. This 

From (2 .3.52)  and ( 2  

W 

the correlation between the n-1' 
the state estimation error ~ ~ - ~ l ~ - ~  
will be done subsequently. 

3.38)  it can be seen that 

%* 

1 
%* %* * %* 

= x  nln nln-1 + An(vn + Bv Hn Xnln-l X (2 .3 .55)  

Then the actual state estimation error covariance matrix 

after the measurement at time n is given by 

(2 .3 .56)  

* 
BT) A*T - A H P * %*T %* 

+ An E(BvXnln-l + E(Xnln-l v n n n nJn-1 

%* The correlation between Bv and ~ ~ l ~ - ~  must be determined in 

order to evaluate P nln* 
Muktiplying (2.3.53) by Bv and performing the condi- 

tional expected value, 

%* 
E: (Xn 

since it 

(2 .3 .57 )  

s a-ssumed that Bv is independent of wn and Bw. 
%* T %* T 

F: (xn I nBv) and E (xn nBw) can be computed recursively. 
Multiplying (2 .3 .55)  by Bv and performing the expected value, 
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VI11 
(2.3.58)  

Multiplying (2 .3 .55)  by Bw and performing the expected value, 

(2 .3 .59 )  

since Bw is assumed to be independent of vn and Bv. 

(2 .3 .53)  it can be seen that 

But from 

SO ( 2 .3.59 1 becomes 

* 2 - (I - A,H~) rn 
BW 

(2 .3 .60)  

(2 .3 .61 )  

It is assumed that the initial state estimation error is 

independent of Bw and Bv so the initial conditions on (2 .3.57)  

and (2 .3.61)  are 

%* T B ) = O  T 
E (2* B ) = E ( X  

010 v 010 w 

Using an analysis similar to that previously given, it 

can be shown that across the ensemble of a l l  possible initial 
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state conditions, measurement and driving noises, - and 

measurement and driving noise biases, the state estimate x 

is unbiased. However, if the biases are present, the actual 

state estimation error covariance matrix is no longer accu- 

rately represented by P 

"* 
njn 

* 
but rather by P as given above. 

nln nln 
If there is a possibility that biases may be present in 

the measurement or driving noises, then it is usually prefer- 

able to estimate their values so that their effect upon the 

state estimator is diminished. This can easily be accomplished 

within the framework of maximum likelihood state estimation 

already established. 

Define a new state variable 

T T T  sT n = (xn, Bwf Bv) 

and a new state transition matrix 

and a new forcing function matrix 

(2 .3.62)  

(2 .3 .63 )  

'n = [!I (2 .3 .64 )  

60  



I II 
Then the augmented state sn obeys the recursive relationship 

s n = Y(n,n-1) snel + An wn (2.3.65) 

Define a new observation matrix 

Then the measurement zn is given by 

z = G n  s + v  n n 

(2.3.66) 

(2.3.67) 

Now the problem is reduced to exactly the same form as 

the case when the noises were zero mean except that now the 

state vector is of increased dimension and includes all possi- 

bPe.noise biases. 

can be formulated in exactly the same way as before with 

initial conditions 

The estimator for the augmented state sn 

This says that the a priori estimates of the biases should 

always be zero since, if they were nonzero, they could be 

removed with the residual uncertainty in the bias values 

then zero mean. 

The covariance of the initial augmented state estima- 

tian srror is given by 

61 
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0 

0 2 

W 
*B 0 

0 2 
*B 0 

where P' is the.covariance of the unaugmented state estimate, 
010 

is the covariance of the driving noise bias, and 0: is 
V W 

*B 

the covariance of the measurement noise bias. 

Thus the augmented state can be estimated using the 

same form of the equations as for the unaugmented state with 

the substitutions 

Hn 

I'n 

'n 

n 
A 

X 

+ Gn 

+ 'n 

n nln + E  
A 

n + s  nln 

If the true covariances of the random parts of the noises 

as well as the covariances of the bias parts of the noises 

are knawn precisely and used in the filter, then it can be 

accurately represents the covariance of the shown that E 

augment& state estimation error, and the filter .is- optimal 

in a mirnimum covariance or maximum likelihood- sense. 

nln 

If instead of the measurement and driving noises having 

a bias, they have a component which is correlated with past 

noises, then a slightly different approach must be used. 

Only a limited type of correlation is easily treated so the 
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following definitions are made. 

It is assumed that the state obeys the relationship 

x = @(n,n-l) x ~ - ~  + rn(wn + wn) C (2.3.68) n 

where w is uncorrelated zero mean noise such that n 

T 
3 

E(Wn w.) = 

C a n d  wn is correlated zero 

Qn 6jn 

mean noise such that 

(2.3.69) 

(2.3.70) 

T is the "correlation time" of the driving noise. It is 

also assumed that wn and wc are mutually uncorrelated so that 
W 

n 

€(Wn WC) = 0 (2.3.71) 
3 

The correlated noise wz can be generated by considering 

wc to be composed of two parts. n 

C * -mw 
Wn-l w = w  + ( e  n n (2.3.72) 

* 
where w is a zero mean random noise that is independent of 

all past noises with 
n 

(2.3.73) 
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It  i s  easy  t o  show t h a t  t h e  c o r r e l a t e d  n o i s e  d e f i n e d  by 

(2.3.72) h a s  t h e  p rope r  c o r r e l a t i o n  between t h e  n o i s e s  a t  

d i f f e r e n t  t i m e s  as given by (2 .3 .70) .  

I t  i s  a l so  assumed t h a t  t h e  measurement zn i s  g iven  by 

z = Hn xn + vn + vc (2.3.74) n n 

where vn i s  u n c o r r e l a t e d  zero  mean n o i s e  such t h a t  

m 
E ( V ~  v ? )  = Rn 6 

3 j n  

and vc i s  c o r r e l a t e d  ze ro  mean n o i s e  such t h a t  n 

(2.3.75) 

(2.3.76) 

T i s  t h e  " c o r r e l a t i o n  t i m e "  of t h e  measurement n o i s e .  I t  i s  
V 

a g a i n  assumed t h a t  vn and v: are mutua l ly  u n c o r r e l a t e d  wi th  

t h e  f u r t h e r  assumption t h a t  a l l  measurement n o i s e s  are 

u n c o r r e l a t e d  wi th  a l l  d r i v i n g  n o i s e s .  

Again it is  convenient  t o  d e f i n e  t h e  c o r r e l a t e d  measure- 

ment n o i s e  by 

* -Wv 
Vn-l  vc = v + (e n n (2.3.77) 

* 
where vn i s  a zero  mean random n o i s e  t h a t  i s  independent  of 

a l l  p a s t  n o i s e s  wi th  

- 2 / T v  
1 

* *T & ( v n  vn ) = Rc (1 - e 
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It is easy to show that the correlated measurement noise 

defined by (2.3.77) has the proper correlation between the 

noises at different times as given by (2.3.75). 

It should be noted that when the correlation time of 

the noises becomes very large, the correlated noises approach 

constant biases, whereas as the correlation times become 

small, the noises become uncorrelated. 

If it is assumed that the state xn is estimated neglect- 
"* 

is computed 
nln 

ing this correlation, the state estimate x 

using (2.3.38) and (2.3.41) , with the "computed" covariance 
will not matrix given by (2.3.39) and (2.3.42). Again x 

be an optimal estimate and P will not correspond to the 

actual state estimation error covariance matrix because of 

the neglected correlation in the noises. 

"* 
nln * 

nln 

From (2.3.68) and (2.3.41) it can be seen that 

( 2  3.79) 

Then the actual state estimation error covariance matrix 

before the measurement at time n is given by 

In order to compute Pnln-l, the correlation between the driving 

noise w 'L* must be and the state estimation error ~ ~ - ~ l ~ - ~  C 
n 
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computed. This will be done subsequently. 

From (2 .3 .74)  and (2 .3.38)  it can be seen that 

1 (2 .3 .81)  
* %* 

+ vc - Hn Xnln-l 
%* %*  

X nln nln-1 + An (Vn n = x  

Then the actual state estimation error covariance matrix after 

the measurement at time n is given by 

(2 .3 .82 )  

%* must be computed in The correlation between vn and ~ ~ l ~ - ~  
order to evaluate P . 

C 

nln 
Multiplying (2 .3 .79 )  by vz and performing the conditional 

expected value 

C since it is assumed that v 

(2 .3 .77)  plus the independence of vn, 

is independent of wzo But using n * 

vcT ) ) E(xn-ljn-l n-1 
-l/Tv %* 

vCT) = (e 
%* 

E(xn-lln-l n 

Similarly it can be seen that 

(2 .3  84)  

1 (2 .3 ,85)  
- U T w  %* cT 

wCT) = (e E (Xn-l 1 n-lwn-l 
%* 

E(xn-lln-l n 
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%* wcT ) can be computed recur- n-lln-1 n-1 vcT ) and E ( X  
%* 

E (Xn-l 1 n-1 n-1 
sively. Multiplying (2.3.81) by vz and performing the 

expected value, 

%* * %* cT * 
E(xnln vCT) n = (I - AnHn) E (Xnln-lvn + An Rc (2.3.86) 

vcT ) E(xn-lln-l n-1 
* -Wv %* = (I-AnHn) @ (n,n-1) (e 

* 
+ An Rc 

C Multiplying (2.3.81) by wn and performing the expected value, 

(2.3,87) 

It is assumed that the initial state estimation error 

is uncorrelated with the measurement and driving wises, so 

the initial conditions on the recursive equations (2.3.86) 

and (2.3.87) are 

wCT) = 0 
010 0 

E &* VCT) = E (x 
010 0 

%* 

By analogy with the estimation of possible noise biases, 

it is possible to estimate the correlated part of the measure- 

ment and driving noises. 
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Ill 111 IIIIIIIIII I r Define a new s ta te  variable 

T T cT V ~ T )  
s n = (Xn, wn I 

and a new s t a t e  t r a n s i t i o n  m a t r i x  

Y(n,n- l )  = 

0 
- 

and a new f o r c i n g  f u n c t i o n  m a t r i x  

- 
rn  'n 

I 0 

0 0 - 

0 

- 
0 

0 

I - 

and a new " d r i v i n g  n o i s e "  v e c t o r  

T *T wT v*T) 
un = (Wn I n' n 

(2.3.88) 

(2.3.89) 

(2.3.90) 

(2.3.91) 

It  can be seen  t h a t  t h e  new s t a t e  sn sa t i s f ies  t h e  r e l a t i o n s h i p  

U + ' n  n s = Y(n,n-1) s ~ - ~  n 

and t h e  measurement zn i s  g iven  by 

+ v  z = Gn sn n n 
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where Gn is defined by 

Now the problem is reduced to exactly the same form as 

the cases when the noises are uncorrelated except t h a t  now 

the state vector is of increased dimension and includes all 

possible correlated noises. The estimator for the augmented 

state sn can be formulated in exactly the same way as before 

with initial conditions 

The covariance of the initial augmented state estimation 

error is given by 

Thus the augmented state can be estimated using the 

same form of the equations as for the unaugmented state 

without correlated noises. 

If the true covariance of the correlated and uncorre- 

lated parts of the noises as well as the proper correlation 

times are known precisely and used in the filter, then it 

can be shown that E as computed by the filter accurately nln 

69 



represents the covariance of the augmented state estimation 

error, and the filter is optimal in a minimum covariance or 

maximum likelihood sense. 
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Chapter 3 

MAXIMUM LIKELIHOOD ESTIMATION 

OF NOISE COVARIANCE PARAMETERS 

AND THE SYSTEM STATE 

3.1 Introduction 

In Chapter 2 the theory of maximum likelihood estimation 

was briefly discussed and then applied to the problem of 

state estimation. The resulting equations were derived under 

the assumption that the probability density functions of the 

measurement and driving noises as well as the initial state 

probability density function are known a priori. It was 

shown that if the second order statistics of the noises are 

not known precisely, the state estimation becomes suboptimal. 

The purpose of this chapter is to utilize the concepts of 

maximum likelihood to remove the restriction that R and Q be 

known preciselyapriori in order to obtain an optimal state 

estimate. 

In Section 3.2 important definitions are given and a 

summary of some classical results of maximum likelihood esti- 

mation discussed. These results concern the asymptotic 

properties of maximum likelihood estimators, but they cannot 

be directly applied to the problem of state and noise covariance 

estimation. 

In Section 3 . 3  the likelihood functions appropriate for 

the solution of a set of closely related problems are derived, 
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all of which concern the estimation of the noise covariance 

parameters. Section 3 . 4  is devoted to demonstrating the 

asymptotic properties of these estimators. 

The remainder of this chapter concerns the application 

of the theoretical results to the problem of state and noise 

covariance estimation. 

3.2 Summary of Previous Results in Maximum Likelihood 
c ~ 

Estimation 

Maximum likelihood estimation has been studied by many 

authors and many useful results have been obtained concerning 

the properties of maximum likelihood estimators. These 

results apply directly only to a limited set of problems, 

when the measurements are independent and identically 

distributed. However, they provide a base upon which the 

analysis of more general problems can rest. The purpose 

of this section is to summarize the important results and 

definitions which will be needed to extend the analysis to 

more general problems. 

First several important definitions must be made. 

These definitions apply equally well to any situation when 

the values of certain parameters are to be estimated on the 

basis of observations of a random variable which is a function 

of these parameters. They are not limited to situations 

when the criterion of maximum likelihood is used to define 

the estimate. 

The estimator of the true value of the parameter a is an 

observable random variable, say an(zl,".,z ) which is a n 
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function of the sample elements (zl,..,z ) and whose distri- 

bution is, in some sense, concentrated about the true value 
n 

of a .  As in linear estimation, it will be found that the 

covariance of the estimate is often a reasonable criterion 

for measuring the concentration. If the realized (observed) 

value of an corresponding to a realized (observed) value of 

(zl,..,zn) is used for ao, the true value of a ,  then the 

random variable an is called a point estimate or estimator 

for aO. This use of an normally would be made, of course, 

only when the value of a. is unknown. 

0' 

A 

1 A 

A 

A A 

If when a = a E (aril ao) = ao, then an is called an 

unbiased estimator for ao. 

unbiasedness that was used in Chapter 2 in the discussion 

This is the last definition of 

of maximum likelihood state estimation. 
A 

If an estimator an converges to a as n + 03, it is 
0 

called a consistent estimator for ao. 

for an to be a consistent estimator is that it be unbiased 

and have a covariance which goes to zero as n -t 00. 

A necessary condition 
A 

A 

If an is an unbiased estimator for 

covariance and has the further property 

estimator has a smaller covariance than 

efficient estimator. 

a having finite 

that no other unbiased 

a it is called an 

0 

A 

n' 

The following results of maximum likelihood estimation 

have been obtained by Rao (Ref. 2 5 ) ,  Wilks (Ref. 37), and 

Deutsch (Ref. 6) after certain assumptions have been made 

about the nature of the likelihood function. 
T Let Z: = ( z : ,  e .  , zn) be a vector of n independent 

~ identically distributed observations and a be the m x 

1 

1 
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vectors of parameters being estimated. 

tional probability density function of Z n can be found by 

application of Bayes I rule. 

Then the joint condi- 

(3.2.1) 

where f(~~lZ,_~,a) is the conditional probability density 

function of zn given Zn-l and a. 

independence of the zi, 

Because of the assumed 

(3 .2 .2 )  

By repeated application of Bayes' rule, it can be seen that 

(3 .2 .3 )  

It is assumed that the likelihood function is chosen to be 

the probability density function (3 .2.31,  in which case the 

natural logarithm of the likelihood function has the form 

Then 

(3.2.4) 

(3 .2 .5 )  

i=l 
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As stated in Chapter 2, maximum likelihood estimation is 

concerned with finding the value of the parameters a such that 

For notational convenience, define 

The following assumptions are made about the likelihood 

function. 

aLn a2Ln a 3 ~ n  
aa 7, 3 The derivatives - exist for almost 

aa aa 
all Zn in an interval R of a. 

m 
'I' 

E [ 5 (=) afn z l c x o ]  afn is positive definite 
n 

For every a in R 

with E [M (Zn) I aol  < K for some K which is independent 

of a and n. 
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Define 

the m x 1 single measurement score aa S ( 2 , a )  = 

aln fn 
the m x 1 total measurement score s n (Znra) = aa 

J ( a o )  = J ( a o , a o )  the m x m single measurement 

conditional information matrix 

J (ao) = Jn(aouao) the m x m total measurement n 
conditional information matrix 

The following theorems are from Wilks. The proofs will 

not be repeated here but will be discussed subsequently. 

Asymptotic Di stributjon- of the Score 

Suppose (zlf..,zn) is a sample from the probability 

density function f(zlao). 

derivatives with respect to a in the range R. Then if 

J (a,a) is positive definite for a in R, the total measure- 

ment' score Sn(Znrao) is asymptotically distributed for large n 

Let f(zlaf possess finite first 

n 
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7 as a zero mean normal random variable with covariance J ( a  1. n o  

Convergence - - of - the Maximum Likelihood Estimator 

Suppose (z1,..,zn) is a sample from the probability 

density function f(zlao) where f(z a )  possesses finite first 

derivatives with respect to a in R 

component of the vector S ( z , a ) ,  be a continuous function of a 

in s2 f o r  all values of z except possibly for a set of zero 

probability. Then there exists a sequence of solutions of 

th Let S j ( z , a ) ,  the j 

(3.2.6) 

which converges almost certainly to ao. If the solution is 

a unique vector an for n - > some no, the sequence of vectors 

converges almost certainly to a. as n -+ 00. 

A 

Asymptotic - Distribution of the Maximum Likelihood 

Estimator 

If (zl,..,zn) is a sample from the probability density 

functkon f(zlao) where f(zla) possesses finite first and 

second derivatives with respect to a in the range R, and if 

the maximum likelihood estimator satisfying ( 3 . 2 . 6 )  is unique 

for some n > some n then it is asymptotically normally 

distributed for large n with mean a. and covariance [Jn(ao)I 
- 0' 

-1 . 
Thus under the assumptions previously given, the maximum 

likelihood estimator of the parameters a. is asymptotically 

unbiased and normally distributed for any value of a. in the 

range R, with 
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Now the distribution of the estimation error over the ensem- 

ble of all possible true values of a. is sought. An analytic 

expression for the unconditional probability density function 
A 

of an cannot be found in most situations. Formally 

A 

Even if f(anlao) is a normal density function, the above 

integral is usually nonanalytic for any nontrivial f (a 1 .  

However, even if the unconditional distribution of an is not 

known, two  useful moments of the distribution, the mean and 

0 
A 

covariance, can be evaluated. 

The unconditional mean of the estimate is defined by 

R 

A -  
0 

= a. f(ao) dao = a 
R 

where 7 is the mean of the distribution f (ao). 
0 

The unconditional covariance of the estimate is defined 
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I 
A 

cov(an) = E[ 

= E [  

But 

and 

so 

But 

and 

Then 

+ 

A A A /- 

1 
r, 

= o  

- 
- A -1 
- Jn 

T - - 
E [  (ao-a ) (ao-a ) 3 = cov(ao) the covariance of the 

0 0 

a distribution 
0 

A - 

79 



- 
J-l represents the mean square estimation error matrix, which n 
for any nontrivial f(ao) is nonanalytic, Formally 

There are several approximate techniques for evaluating this 

integral which are discussed in Section 3.7, 

3 .3  Derivation of the Likelihood Function - 

In this section several closely related problems are 

studied and the likelihood function appropriate for the 

solution of each derived, It will be shown that the asymp- 

totic behavior of the solutions of each problem is the same 

so that if the asymptotic behavior of any one is found, the 

results can be applied to the others. The notation and 

definitions of Section 2.3 are used with the additional assump- 

tion that the measurement and driving noise covariance matrices 

are diagonal and time invariant. The technique of maximum 

likelihood estimation is not restricted to cases when this 

assumption is valid, but the estimation problem becomes much 

more complicated if this assumption is not made. A discussion 

of the problem when this restriction is not employed is given 

in Chapter 7. 

Estimation of Noise Covariance Parameters with No 

A Priori Noise Covariance Information 

The first problem considered is estimating the diagonal 

elements of the measurement and driving noise covariance 

8 0  



matrices without the use of a priori information about these 

quantities. The maximum- likelihood estimate of the noise 

covariance parameters is defined by 

A A  

( 3 . 3 . 1 )  

where l(R,Q,Z ) is the likelihood function which is chosen 

to be the conditional probability density function 
n 

( 3 . 3 . 2 )  

By application of Bayes' rule 

Repeating the above procedure to find f(Zn-llR,Q), it can be 

shown that 

( 3 . 3 . 3 )  

where f (zil Zi - l,R,Q) is the conditional probability density 
function of zi given 7,i-l, R, and Q. 

Using the results of Section 2 . 3 ,  it can be shown that 

z is a normally distributed random variable with conditional i 
mean 
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and conditional covariance 

&(Azi A z ~ ~ Z ~ - ~ , R , Q )  T = R + HiPili-l HT 

A A Azi = z - H. 1 x ili-1 i where 

A 

is the maximum likelihood estimate of xi after i-1 xi I i-1 
measurements using the true values of R and Q to compute the 

proper filter gains, and Pili-l is the conditional covariance 

of xi about x 
A 

i I i-1' 

It is assumed that a priori information about the state is 

used in forming the above state estimates so that a unique 
A 

exists for all i. i I i-1 X 

Define 

Bi - - R + HiPili-l HT 

Then the conditional probability density 

is given by 

function of zi 

-1/2 (AziBi T -1 Azi) 
e ( 3 . 3 . 4 )  

As in Chapter 2 ,  it is convenient to work with the 

natural logarithm of the likelihood function ( 3 . 3 . 2 ) .  



. 
A f t e r  a l g e b r a i c  man ipu la t ion ,  

( 3 . 3 . 5 )  7 L n ( R , Q , Z n )  = c o n s t a n t  - 1 / 2  [ f lnlBil  + AzTBY'Az~ 

i=l 

where " c o n s t a n t "  i n c l u d e s  a l l  t e r m s  t h a t  a r e  n o t  f u n c t i o n s  of 

R o r  Q. 

I t  is convenient  t o  i n t r o d u c e  an a u x i l i a r y  v a r i a b l e .  

5 i s  t h e  (y + q) x 1 v e c t o r  of t h e  d i agona l  e lements  of 

R and Q. 

The l i k e l i h o o d  e q u a t i o n s  are  ob ta ined  by e q u a t i n g  t h e  

d e r i v a t i v e s  of L ( R , Q , Z  ) w i t h  r e s p e c t  t o  5 t o  zero .  Using 

t h e  i d e n t i t i e s  of Appendix A,  a f t e r  a l g e b r a i c  manipu. la t ion,  
n n 

A n _.T 

i=l 

( 3 . 3 . 6 )  
A 

i s  found as  t h e  s o l u t i o n  of 'n 

( 3 . 3 . 7 )  

I n  g e n e r a l  there i s  no c l o s e d  f o r m  s o l u t i o n  of (3 .3 .7 )  f o r  

6, so an  i t e r a t i v e  s o l u t i o n  l i k e  t h o s e  d e s c r i b e d  i n  S e c t i o n  

3.6 must b e  employed. 

A 
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Estimation of Noise Covariance - _ _ _  Parameters with A Priori - 

Noise Covariance Information _ _ _  

In this problem the measurement and driving noise 

covariance matrices are not known precisely a priori but 

rather knowledge of them is described by a joint probability 

density function f(R,Q), where it is assumed that f(R,Q) is 

known a priori. The maximum likelihood estimate of the noise 

covariance parameters in this case is defined by 

( 3 . 3 . 8 )  

A where 1 (R,Q,Zn) is the augmented likelihood function which 

is chosen to be the conditional probability density function 

By application of Bayes' rule 

( 3 . 3 . 1 0 )  

f(Z ) need not be evaluated as it is not a function of R or 

Q. Formally 
n 

All R and Q dependence is integrated out. 

84 



A A Define Ln(R,Q,Zn) = In 1 (R,Q,Zn) (3.3.11) 

Then it can be seen that 

Ln A (R,Q,Zn) = Ln(R,Q,Zn) + In f(R,Q) - In f(Zn) (3.3.12) 

It is assumed that R and Q are independent random 

variables, in which case 

It is further assumed that the diagonal elements of R and 

Q are mutually independent, so 

Y 
f(R) = f(Rii) 

rl 
f (Q) = f (Qii) 

i=l 
n 

1 Then Ln(R,Q,Zn) A = constant - 1/2 [ z l l n \ B .  1 I+AZFB;'AZ~ 

Y 17 
+ In f(Rii) + In f(aii) ( 3 . 3 . 1 4 )  

i=l i=l 

where "constant" includes all terms that are not functions 

of R and Q. 
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A 

(3.3.14) is then set to zero and solved for 5 . Again there 

is no general closed form solution so some iterative procedure 

must be employed, However, it can be seen that the inclusion 

of a priori information has a tendency to shift the solution 

point towards the peak of the a priori distribution of 5.  

n 

Estimation of Noise Covaxiance Parameters and the System 

State with No A ~ Priori Noise Covariance Information - 

In this problem the noise covariance parameters and the 

state are to be estimated simultaneously. Noapriori infor- 

mation about the noise covariance parameters is to be used, 

but as before it is assumed that a priori state information 

is used. The maximum likelihood estimate of these quantities 

is defined by 

(3 3 15)  

where l(R,Q,xn,Z ) is the likelihood function which is chosen 

to be the conditional probability density function 
n 



~ ~~~ _ _  ~~ 

7 

where f(xn,ZnlR,Q) is the joint conditional probability density 

function of the state xn and the measurements Zn given R and 

Q. By application of Bayes' rule 

(3.3.17) 

(3.3.18) 

The set of parameters to be estimated is now 

T T  aT = (Xn, 5 1 

Using (2.3.22) and (3.3.5) it can be seen that 

(3.3.19) T -1 L,(R,Q,X~,~,) = constant - 1/2 I +  AxnPnlnAxn 

n 

i=l 
A A = x  - x  Axn n nln where 

and "constant" includes all 

J 

terms that are not functions of 

x R, or Q. n' 
The likelihood equations are obtained by equating the 

derivatives of-Ln with respect to a to zero. 

with finding the state estimate, 

Dealing first 

A a Ln 
n 

= - (Xn - x nln ITP-l nln (3.3.20) 
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Then the solution of 

is clearly 

A 

= o  n nln 

A A h  

( 3 . 3 . 2 1 )  

( 3 . 3 . 2 2 )  

This says that the maximum likelihood estimate of the state 

x after n measurements is just the maximum likelihood state 

estimate which uses the estimates of R and Q to compute the 

filter gains. 

n 

The simultaneous estimates for < ( R  and Q )  are found as 

the solutions of 

A 

= o  n n[n 
A 

( 3 . 3 . 2 3 )  

Using the identities of Appendix A, after algebraic 

manipulation, 

^T 
aBi A H . ] ]  axi 1 1 T ( 3 . 3 . 2 4 )  T -1 

n 
+ 1 Tr[ (B~~_B;'AZ~AZ~B~ )- - 2 Bi Azi 

1 at7 a<' i=l 
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Substituting the solution of (3.3.21) into (3.3.24), 

(3.3.25) 

As before there is no general closed form solution of (3.3.25) 

for 5, so some iterative procedure must be employed. However, 

when there is no driving noise (Q = 0) a considerable simpli- 

fication occurs. 

A 

By use of Bayes' rule, the likelihood function (3.3.16) 

can be rewritten in the following form. 

By repeated application of Bayes' rule, it can be shown that 

When Q = 0, it is easy to show that 

A A 

where 



A where "iln = z i - Hi Q(i,n)xn 

Then (3.3.19) becomes 

n - 
(3.3.28) I T -1 + 1 lnlRl -!- (zi-Hi@(i,n)x n ) R (zi-H.@(i,n)x 1 n ) 

i=l 

Then 

n 
Define F (in) = 1 QT(i,n)HT;-lHi@(i,n) i n  

nln 
i=l 

Then after algebraic manipulation, the solution of (3.3.21) 

f o r  x is 
A 

nln 

n 
A - + F 1 -1 (Pnloxnlo -1 A + QT(i,n)HiRn T A - 1  zi) (3.3.30) 
X nln - ('nlo nln 

i=l 

Using the identities of Appendix A, it can be shown that 

n... n 
(3.3.31) -1 T -1 a~ 

a ?  

d L  
y - - -  n -  1 Tr[ ( R - l  - R AzilnAziln R )-I 2 ac' i=l 
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__ .. . . . _. _ _  

A * .  

The solution of (3.3.25) for R;’ then becomes 

(3.3.34) 

IT]’’ (3.3.32) In 

A closed form solution of (3.3.30) and (3.3.32) for 

and Rn is not possible except in the trivial case of a 
A A 

X 

scalar measurement and when no a priori information about 

the state is used. In this case, P 

becomes 

nln 

= 0 and (3.3,30) -1 
nlo 

X A = [ f QT(i,n)HiHi@(i,n) T ]-’ f QT(i,n)Hizi T 
nln 

i=l i=l 
(3.3.33) 

A 

From (3.3.33) it can be seen that x is not a function of 

Rn so that x can be computed independently of what value 

of Rn is obtained from (3.3.32). 

A A nln 

I\ nln 

In any other case a numerical solution of (3.3.30) and 

(3.3.32) must be performed. However, even if a closed form 

solution is not obtained, the estimation equations in this 

no driving noise case have a particularly simple form. 

Estimation of the Noise Covariance Parameters and the 

Systemstate - _ _ _ ~ _  with A Pnori_N&se Covariance ~ fnfomation 

- _ _  - _ _  

- 

In this problem the state and noise covariance parameters 

are to be simultaneously estimated when a priori information 

about R and Q is used. The maximum likelihood estimate of 

these quantities in this case is defined by 
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A where 1 (R,QIxn,Z ) is the augmented likelihood function 

which is chosen to be the conditional. probability-density 

function 

n 

By use of Bayes' rule 

( 3 . 3 . 3 5 )  

( 3 . 3 . 3 6 )  

From ( 3 . 3 . 1 0 )  

Assuming that all the diagonal elements of R and Q are 

mutually independent, it can be shown that 

Ln(R,Q,xnsZn) A = In 1 A (R,Q,X,,Z,) = Ln(R,Q,XniZn) ( 3 . 3 . 3 7 )  

Y rl 

+ In f (Rii) + 1 In f(Qii) 
i=l i=l 

so n 

( 3 . 3 . 3 8 )  

aLn(R,Q,XnJn) 
is given by ( 3 . 3 . 2 0 )  and ( 3 . 3 . 2 4 ) .  aa where 

It can be seen that the likelihood equation for the state is 

unchanged by the inclusion of a priori information about 5 

9 2  



since f(5) is not a function of xn. 

for the noise covariance parameters are modified by the 

addition of the term related to the a priori probability 

density function of the parameters 5 .  

The likelihood equations 

Several comments should be made about the four problems 

just discussed. In each problem it was assumed that a priori 

information about the state was used in forming the state 

estimates. This assumption gxeat-ly simplifies the formula- 

tion and solution of the problem while not being unreasonably 

restrictive. If the initial. state estimate is believed to be 

of poor quality, then setting its covariance to a large 

positive definite matrix will effectively result in not using 

the a priori information about the state. The assumption 

that the initial state uncertainty has a normal distribution 

is a realistic assumption in most applications. 

However, it was felt that a distinction should be made 

between noise covariance estimators which do or do not use 

a priori information about these parameters. The derivation 

of the estimation equations with no a priori noise covariance 

information is important because an arbitrary selection of an 

a priori distribution of these quantities does not have to be 

made. The proper choice of a distribution for the covariance 

parameters is much less clear than was the case in choosing a 

distribution of the initial state estimation erroro The case 

of no a priori informatiun could be handled within the frame- 

work of the estimator that uses a priori information by setting 

the covariance of the a priori noise covariance parameter 
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distribution to a large quantity but with relatively little 

additional effort the two cases can be treated separately. 

The most physically motivated-problem is the last of the 

four given above, that of maximizing the joint conditional 

probability density function of the state and noise covariance 

parameters, The solution of this problem gives the most 

probable values of the state and noise covariances based upon 

the measurements and the a priori information. However, as 

will be seen, the asymptotic behavior of the solution of this 

problem is most easily obtained in terms of the asymptotic 

behavior of the simpler problem of estlfmating the noise 

covariance parameters alone. This is the primary motivation 

for separately treating these two problems. 

Noise Covariance and __ 

Likelihood Estimators 

In Section 3.2 the asymptotic properties of a restricted 

set of maximum likelihood estimators were given, namely that 

class of estimators for which the measurements were indepen- 

dent and identically distributed, Now the asymptotic properties 

of four maximum likelihood estimators that do not fit in the 

above category are sought. 

1) noise covariance estimation with no a priori 

information 

2 )  noise covariance estimation with a priori information 

33 noise covariance and system state estimation with 

no a priori information 
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4 )  noise covariance and system state estimation with 

a priori information 

As will be shown, if the asymptotic properties of the 

first of the above estimators are found, the properties of 

the other three follow immediately. Therefore, the asymptotic 

properties of the noise covariance estimator with no a priori 

information will be found first. 

The maximum likelihood estimate of R and Q was defined 

as the solution of ( 3 . 3 . 7 ) .  Define the single measurement 

score 

^T 
aBi axili-~ T S j (Zi,[) = - - 1 Tr[ (Bil-BIIA~iA~TBT1)- - 2 Bi1Azi Hi I 

( 3 . 4 , l )  

2 1 1  a $  a$ 

( 3 . 4 . 1 )  differs from the single measurement score of Section 3 , 2  

because it is a function of all measurements up to and includ- 

ing the ith measurement. Define the total measurement score 

( 3 . 4 . 4 )  
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J (6,) = J (So, 6,) the single measurement. conditional 

information .matrix 

jn(S0) = J ( 5  ,So) the total measurement conditional n o  
information matrix 

Then the likelihood equations ( 3 . 3 . 6 )  become 

( 3 . 4 . 5 )  

It can be shown that when 5 = So, the true value of the 

parameters, the measurement residuals Az i are zero mean normal 

variables with covariance B. with the further property that 

the residuals at different times are independent. Or 

1‘ 

It can also be shown that 

where 
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aBi 

a<] 
and E [ Tr [ (B~l-B~lAziAz'fBT1)y] Tr (Bi1Azl 

1 1  

Therefore, after algebraic manipulation it can be shown that 

+ Tr (BflHiG$-lHi) T 6il 

From (3.4.7) it can be seen that S(Zi,So) is independent of 

S(Zl,So) for i # 1. Then it follows immediately that 

(3.4.8) 

(3.4.7) and (3.4.9) represent respectively the single and 

total measurement conditional information matrices, 

Because of the independence of the measurement residuals 

and the other relationships shown above, the 5 0  when 5 = 

asymptotic properties of the maximum likelihood noise covari- 

ance estimator can be found relatively easily. These properties 

are quite similar to those mentioned in Section 3,2 even though 
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t h e  measurements are n o t  now i d e n t i c a l l y  d i s t r i b u t e d .  

Asymptotic D i s t r i b u t i o n  ~ gf t h e  Score  - 

Suppose (zl,..,z n ) is  a sample from t h e  p r o b a b i l i t y  

d e n s i t y  f u n c t i o n  f (z i lZi - l ,  5,). 

f i n i t e  f i r s t  d e r i v a t i v e s  w i t h  r e s p e c t  t o  E i n  t h e  range  G!. 

Then i f  J n ( < , < )  is  p o s i t i v e  d e f i n i t e  f o r  5 i n  G!, Sn(Zn,< 0 ) 

i s  a s y m p t o t i c a l l y  d i s t r i b u t e d  f o r  l a r g e  n as  a ze ro  mean 

normal random v a r i a b l e  wi th  cova r i ance  J , ( E , ) .  

L e t  f (z i lz i - , ,E)  p o s s e s s  

Proof :  I t  has  a l r e a d l  been shown t h a t  Sn(Zn,co)  i s  a 

z e r o  mean random v a r i a b l e  w i t h  cova r i ance  J n ( E O ) .  Now a l l  

t h a t  remains t o  show i s  t h a t  Sn i s  a s y m p t o t i c a l l y  normally 

d i s t r i b u t e d ,  From t h e  d e f i n i t i o n  of S n ( Z n , c o ) ,  

I t  w a s  shown t h a t  S(Zi,<,) w a s  independent  o f  S(Zl,<,) f o r  

i # lo 

by having a l a r g e  v a l u e  w i t h  a p p r e c i a b l e  p r o b a b i l i t y ,  t h e n  

by use of t h e  c e n t r a l  l i m i t  theorem concern ing  t h e  sum of 

independent  xandom v a r i a b l e s ,  t h e  s c o r e  S n ( Z n , c o )  can be 

shown t o  be  a s y m p t o t i c a l l y  normally d i s t r i b u t e d  f o r  large n. 

I f  it i s  assumed t h a t  no t e r m  dominates  t h e  above sum 

LkeLihood Es t ima to r  - 

Suppose ( Z ~ , . ~ , Z  ) i s  a sample from t h e  p r o b a b i l i t y  n 

d e n s i t y  f u n c t i o n  f (2,. 1 I Z i - l , < o ) .  L e t  f ( z i  I z ~ - ~ , < )  posses s  
- 

f i n i t e  f i r s t  d e r i v a t i v e s  w i t h  r e s p e c t  t o  5 i n  R .  L e t  S J ( z i , < )  

b e . a  cont inuous  f u n c t i o n  of 5 i n  52 f o r  a l l  values of Z i 
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except possibly for a set of zero probability. If as n + 0 0 ,  

then there exists a sequence of solutions of 

Si(Zn,<) = 0 (3-4 10) 

which converges in probability to C o o  

the solution is a unique vector En8 the sequence of vectors 
converges in probability to <, as n + soo 

If for n - > some no 
A 

Proof: Define 

Then 1 Si(Zn,<) is the mean of a sample of size n from a 
population having mean A' ( E o , < )  if E o  is the true value of E o  

From the weak law of large numbers, 

probability to A' (So, <) 

R' to be ( e 0 - 6 ,  Eo+6)  with 6 > 0. 

is monotonically decreasing over this interval, and since 

n 

Si converges in 
-. . 

Without l o s s  of generality, define 

It can be shown that A j ( <  ,<)  
0 
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Therefore there exists an n(6,E) so that the-probability 

exceeds 1 - E that both of the following inequalities hold 
for: any n > n ( 6 , E )  if 5 ,  is the true value of 5. 

Since sj(zi,e) is continuous in 5 over Q for all zi except 
for a set of probability zero, a similar statement holds for 

A SA(Zn,c). n 
in Q ' ,  

Therefore, for any fixed n > n(6,E) for some 

This is equivalent to the statement that a sequence of roots 

of (3.4.10) exists which converges in probability to 5 , .  In 

particular if (3.4.103 has a unique solution 5, for n = 

+ l,.., for some integer no, then the sequence S,, n > no, 

A 

A 

cunverges in probability to 6,. 

Asymptotic Distribution ~ of the Maximum Likelihood Estimator 

If (zl,..,z ) is a sample from the probability density n 
function f(zilZi-l,So) where f(ziiZi-l, 5) possesses finite 
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first and second derivatives with respect to 5 in the range a ,  

and if the maximum likelihood estimator 5, satisfying (3.4.10) 

is unique for n - > some no, then it is asymptotically normally 

distributed for large n with mean 5, and covaraince [Jn(S )]-I. 

* 

0 

Proof: First it will be shown that 

(3.4.11) 

with large probability. This will then be used to show that 

5, is an efficient estimator and the asymptotic distribution 
* 

-1 A 

of (En-<,) is normal with zero mean and covariance [J,(So)l . 
A 

Since 5, satisfies the likelihood equation 

then by a Taylor series expansion of Sj at to, n 

A - where Ago - 5, - 5, 

Here as elsewhere index summation notation is used. If an 

index appears more than once on the right side of an equation 

with no comparable index on the left side, a summation over 

that index is implied. 

Define 

T' 
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Then (3.4.12) becomes 

T 
0 = Sn(ZnfSo) + Cn(Zn,E0)ASo 

Assuming that Cn is of full rank, 

-1 T ASo = - [Cn(Zn,S0)1 Sn(Zn’So) 

-1 Def ine bn = Jn(So) [Cn(ZnrSo)I 

Multiplying (3.4.13) by J n ( S o )  and rearranging terms, 

(3.4.14) T T J n ( S o ) A S o  - Sn(Zn,So) = - (bn + 1) Sn(Zn,So) 

(3.4.13) 

It will now be shown that bn + - I with large probability, in 
which case the right hand side of (3.4.14) -f 0, establishing 

the desired result. 

As before, define 

and 

Now define 

1.02 



Then 

Assuming that differentiation with respect to 5, can be 

taken outside the integral 

(1) = 0 d 

Or 

But 

As n becomes large, by application of the strong law of large 

numbers, it can be shown that 
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Analogous to the assumption made in Section 3.2, it is 

assumed that 

a 3 ~ n  

a $ a c  ag 
< K  1 - 

k 1  

with large probability as n + 0 0 ,  where K is independent of 5 

and n. Since A 6  + 0, the product 

with large probability. Assuming that for large n, 

where K1 is a positive definite matrix independent of n, then 

and b + - I  with large probability n 

Thus it has been shown that 

(3.4.15) 

It has already been shown that Sn(Zn,t0) is asymptotically 

distributed as a normal random variable with zero mean and 

covariance J,(S,). From this and (3.4.15) it can be concluded 

that (En-<,) is normally distributed with zero mean and 
A 
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1 -  
-1 covariance [Jn(So) I as n * 0 3 .  

Wilks has shown that (3.4.15) is a necessary and 
A 

sufficient condition for stating that 5, is an asymptotically 

efficient estimator for 5,. 

Thus it has been shown that the maximum likelihood 

estimator for the noise covariance parameters using no a priori 

information about these parameters is: 1) consistent, 

2) asymptotically unbiased, 3 )  asymptotically normally distri- 

buted, and 4) asymptotically efficient. Now the asymptotic 

properties of the three closely related estimators previously 

mentioned are sought. 

If a priori information about 5 is used, the maximum 

likelihood estimator was defined to be the solution of (3.3,14). 

The estimator in the absence of a priori information is the 

solution of ( 3 . 3 . 6 )  . 

) A  = o  1 aLni:’zn) 52 
(3.4.17) 

A A 

where 5, is the estimator using a priori information and 5, 

is the estimator without using a priori information, Expand- 

ing (3.4.16) in a Taylor series about c2, A 

+ ..... = 0 
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But 

and 
52 52 

It has been shown that f o r  large n, 

But 

s o  

-1 It has already been assumed that as n -+ 03, 

Now the assumption i s  made that 5, is sufficj-ently close to 

[Jn(So) I -+ 0. 
A 

so that the following approximation is valid. 5 0  

L 

N - Jn (5,) 

It is also assumed that as n -+ 00, - J ( 5  ) dominates in 

(3.4.19) so that 

n o  
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and then (3.4.18) becomes 

h 

The first linear correction to the solution 5, due to inclusion 

of a priori information is then 

A A 

5, = 5, + [JnKo)1 

-1 But as n + [Jn(Eo)] -t 0, so assuming that all elements 

aln f(5) ,, are finite, 

h * 
5, -+ 5, as n-t m 

Therefore, under a wide set of conditions, the estimator which 

utilizes a priori information behaves asymptotically as the 

estimator which does not utilize this a priori information. 

If the state and noise covariance parameters are estimated 

without a priori information about 5 ,  the maximum likelihood 

estimator was defined to be the solution of (3,3.21) and 

(3.3.23). Or 

(3.4.20) 

(3.4.21) 
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V 

The estimator for 5 alone with no a priori information about 5 

was defined to be the solution of (3.3.6). Or 

( 3 . 4 . 2 2 )  

h 

where 5, is the estimate of 5 found simultaneously with 

X 
h A 

and 5, is the estimate of 5 found independently. 

It can be seen that 
nln 

A 

Expanding ( 3 . 4 . 2 1 )  in a Taylor series about E , ,  

+ 
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7 

It has been shown that for large n ,  

where J (5,) is the conditional information matrix. 

to an assumption previously made, it is assumed that 5 2 is 

sufficiently close to 5, so that 

Analogous 
A 

n 

But 

5'5, 
A 

Assuming that as n +. ==, - Jn(S0) dominates in (3.4.251, 
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and then ( 3 . 4 . 2 4 )  becomes 

A 

+X ,n 
w2 

." 
11 

A 

The first linear correction to the solution 5, due to 

simultaneously estimating the state is then 

-1 apn n But as n + m, [J,(<,)] -f 0, so assuming that [Tr(P-' l)]" 
nln a5 5 2  

remains finite, 

A A 

5, -+ 5, as n -+ 03 

Therefore, the estimator of 5 when the state is also estimated 

behaves asymptotically as the estimator which does not 

simultaneously estimate the state. As was shown, the estima- 

tor of 5 alone converges to the true value of 5, so that the 

state estimator which then uses this estimated value of 5 

converges to the true maximum likelihood state estimator 

discussed in Chapter 2 .  

Using similar arguments, the inclusion of a priori 

information about 5 in the simultaneous state and noise 
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m- - 
covariance parameter estimator does not affect its asymptotic E 

properties, 

3.5 Selection of the A Priori Noise .- Covariance Distribution - 

The choice of f(R) and f(Q) is somewhat arbitrary as 

these functions are introduced so that uncertainty in know- 

ledge of R and Q can be properly treated. However, once 

selected, they can strongly influence the solutions of the 

likelihood equations. They must be selected to realistically 

represent possible variations in the values of R and Q while 

not being mathematically intractable, Caution should be 

observed in their selection because the simplest and seemingly 

realistic distributions may be unsuited for use in a maximum 

likelihood estimator. 

Suppose that f(R) or f(Q) is defined to be nonzero only 

over some finite range of R or Q and is zero outside this 

range. Then all solutions of the likelihood equations for 

R and Q must also lie within this range. This can be seen by 

considering the following example. 

Let f(zl5) be the conditional probability density function 

of a random variable z, assumed to be normally distributed 

with zero mean and variance 5 .  Let f(5) be the a priori 

probability density function of 5 ,  defined over some finite 

range 

5, < 5 < 5, 

otherwise 

111 



By application of Bayes' rule 

where 

For any finite value of E ,  f(z1E) is zero only at z = fa, 

and it is assumed that f(5) is selected so that f(z) is also 

zero only at z = *a. Then from the above it can be seen that 

f ( 5  I z) is zero outside the range (co,E,). 
regardless of the shape of f (51~) within the range (Eo,E,), 
there can be no legitimate solutions of 

This says that 

outside this range. If the range is too small and happens 

to exclude the true value of 5 ,  the maximum likelihood equa- 

tions cannot have a valid solution for the true value of 5.  

So if f(R) and f ( Q )  are defined only over some finite or 

semi-infinite range of R or Q, this range must be large 

enough to include all possible true values of R and Q. 

Since the diagonal elements of R and Q represent 

variances, it is clear that the a priori probability density 

functions for these quantities must be zero for all negative 

values of the diagonal elements. From the preceding discussion 

it can be seen that all solutions of the likelihood equations 
h . .  

for Ri7 and must be positive. 
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Perhaps the simplest possible distribution for R and Q 

is a rectangular distribution for any diagonal element, 

denoted by 5 .  

5, L 5 2 51 ,  5, > o  (3.5.1) 1 
1 0  

f(5) = 5 -5 

= o  otherwise 

It can be seen that this distribution does not possess finite 

derivatives with respect to 5 for any value of 5 .  The deriv- 

atives are either zero or infinite. Therefore 

This says that if 5, < 5 < C,, then the maximum of f(51z) 

occurs at the same point as the maximum of f(zl5) and that no 

valid maximum can exist outside the range (<,,<,). The solu- 
A 

tion for 5 in this case would be identical to the solution 

obtained by considering that no a priori information about 

the value of 5 exists, as long as such a solution is within 

the range (50,51)- 
This is the distribution that would be used, at least 

in theory, if the only a priori information about 5 is that 5 

must be positive. In such a case 
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5, < 5 < 5, 1 f ( 5 )  = lim 
51-50 

5,+0 

= o  otherwise 

It should be noted that if a rectangular distribution of 

5 is used, then in the absence of any measurements, no unique 

maximum likelihood estimate of 5 exists. This is a conse- 

quence of the fact that all values of 5 within the range 

(5,,5,) are equally likely to occur, so that there is no 

preferred value from the viewpoint of maximum likelihood. 

If another estimation criterion is used, there may be a 

preferred value. 

tion criterion, the mean of the distribution of 5 would be 

the minimum variance estimate. 

In the case of a minimum variance estima- 

In many situations more may be known about 5 than merely 

that its value lies in some range with equal probability of 

occurence in that range. In such situations a more complex 

f(5) should be assigned. Two possible distributions are 

given below, a truncated normal distribution and a Gamma 

distribution. 

Truncated Normal Distribution - 

If 5 has a truncated normal distribution, then its 

probability density function is given by 

5, < 5 < 5, (3.5.2) 

= o  otherwise 
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where 

erf( ) is the error function 

1-1 is the mean of the untruncated distribution 

a2  is the variance of the untruncated distribution 

Fig. 3.1 Truncated Normal Distribution 

The mean of the truncated distribution is 

( 3 . 5 . 3 )  
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where 
2 

-S 
2 
1 - e 2 ,  

-S 
Ap = a2 K(e 

and the variance of the truncated distribution is 

2 2 - A p  = cr2 + Aa 

where 

Gamma Distribution 

If 6 has a Gamma distribution, then its probability 

density function is given by 

( 3 . 5 . 4 )  

( 3 . 5 . 5 )  

where a and 1-1 are parameters of the distribution, and a > 0. 

r(a) is the Gamma function. 
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0 1.0 2.0 5 -+ 

Fig. 3.2 Gamma Distribution with p = 1 

The mean of the distribution is 

(3.5.6) 

and the variance of the distribution is 

(3.5.7) 

In Chapter 2, the a priori state estimate was defined 

as the mean of the normal a priori state probability density 

function. Because of the symmetry of the normal density 

function, the mean is located at the point of maximum 
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probability or likelihood. Now the a priori values of R and 

Q must be defined in terms of parameters of their respective 

distributions. The Gamma distribution is not symmetric 

about its mean so that the point of maximum probability occurs 

at a different point than the mean of the distribution. The 

same is true for the truncated normal distribution if the 

points of truncation are not chosen to be equidistant from 

the mean. Because the criterion of maximum likelihood is 

used to define the optimal estimates of the state and noise 

covariance parameters, it would be consistent to define the 

a priori estimates of these quantities as the points of 

maximum likelihood of their respective a priori probability 

density functions. 

the kth component of 5, then 

^k If 5, denotes the a priori estimate of 

Ak = uk for the truncated normal distribution 5 0  

"k - (ak-l) yk 
5 0  - k f o r  the Gamma distribution 

a 

Actually, if the parameters of the respective distribu- 

tions are defined, there is no need to separately define the 

a priori estimates of 5 when solving the likelihood equations. 

The solution is a function of the parameters of the distribu- 

tion, not 5,. 

mate solutions are discussed, it becomes convenient to intro- 

duce the a priori estimates as separate entities, although 

they will be related to the parameters of their distributions 

as shown above. 

A 

Eowever, in subsequent sections when approxi- 
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If a rectangular distribution of 5 is selected, then no 

point of maximum likelihood of this distribution exists. In 

this case, the a priori estimate of 5 is defined as the mean 

of the rectangular distribution. In fact, any point within 

the nonzero range of the distribution could be selected as 

the a priori estimate without affecting the solution, but for 

the sake of uniqueness, the above definition is made. 

3.6 Computation - of the Estimate 

The likelihood equations for estimating the state and 

noise covariance parameters with and without the use of 

a priori information have been derived but in general the 

equations are so complicated that solutions cannot be 

obtained in closed form. In this section techniques for a 

numerical solution of the equations are discussed. For 

simplicity, only one of the several possible cases are treated, 

that of simultaneously estimating the state and noise covar- 

iance parameters when a priori information is used. The 

solution of this problem includes all of the features that 

are necessary for the solution of the others, so that only 

slight modification of the discussion below is necessary in 

the other cases. 

The solutions of the augmented likelihood equations 
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are sought. A general method of solution would be to assume 

a trial solution and derive linear equations for small addi- 

tive corrections. 

corrections become 

the estimate, then 

retaining only the 

A T  

a n 
- 7 %  

Assumina tf 

This process can be repeated until the 
A 

negligible. AIf a. is the trial value of 

expanding - in a Taylor series and a Ln 
aa 

h A 

first power of Aao = a - a leads to n 0' 

(3.6.1) 

A 

correction to a. is 

-1 T 

a 
0 

Aao = - 

0 
a 

(3.6.2) 

A A 

The next trial value is then a. + Aao. 

Clearly this method has several drawbacks. Computation of 
a 'I,: - and its inverse is very complicated, and once a stable 
aa 
solution is found, another computation, the conditional infor- 

mation matrix, must be performed before any evaluation of the 

performance of the estimator can be undertaken. A mechaniza- 

tion introduced by Rao eliminates these drawbacks. It is 

quite similar to the above method but employs one approxima- 

tion which greatly reduces the number of computations. For 

2 

this iterative solution, the approximation is made 

(3.6.3) 
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A "  where Jn(ao) is the augmented conditional information matrix 

defined by 

Thus the additive correction hao becomes 

(3.6.4) 

" 
In large samples with a given a = ao, the difference between 
a 2 ~ ;  A "  and 

approximation holds to first order of small quantities. 

,, - Jn(ao) will be of order l/n, so that the above bL0 
A 

When a stable solution of an is obtained, the asymptotic 

estimation error is zero mean normally distributed with 

conditional covariance [Jn(a)J 

by the computed [Jn (an) 1 - l .  

A -1 which is closely approximated 
A "  

In this method the main difficulty is the computation 

and inversion of the information matrix at each stage of the 

iteration, In practice this is found to be unnecessary. The 

information matrix can be kept fixed after some stage and only 

the score recalculated. At the final stage when stable 

values are reached, the information matrix can be recomputed 

at the estimate value to obtain the covariance of the estima- 

tion errors 

Whenever an iterative solution to a set of nonlinear 

equations is proposed, there is always a question of conver- 

gence. This question is reasonably well resolved in the case 
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of the likelihood equations. Deutsch discusses this problem 

and references several other works on the subject. The results 

of his discussion are given below. 
.. 

If a. is selected as the initial estimate of the solution 
A 

of the likelihood equations, if a 

of the estimate, and if a is the "true" maximum likelihood 

is the jth iteration value 
j 

A 

estimate, 

decreases 

iteration 

A n  

then the iteration process converges if l a  -a1 

as j increases and tends to zero as j -f 0 0 .  The 
j 

process is defined as follows: Let g(a) be a 

differentiable function which has no zero in the neighborhood 

of the root a for the likelihood equation. The existence of 

a is postulated. Define 

A 

A 

where L is a likelihood function. The general iteration 

process is then 

If 
A A 

E = laj - a1 
j 

is the estimation error at the jth iteration, then g ( a )  must 

be chosen such that 

condition assures the convergence of the iteration process 

< E and E -+ 0 as j -+ 0 0 .  This 
j j 
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A 

to the value a. By using the asymptotic properties of the 

maximum likelihood estimator for large sample sizes, the two 

previously given iterative techniques for the computation of 

the estimate can be shown to be convergent. 

3.7 Computation - ~ - of .the _- Information - -  - Matrix 

By calculation of the information matrix, the asymptotic 

covariance of the maximum likelihood estimate can be obtained. 

Care must be taken to distinguish between [Jn(o,)]-l and 

[Jn(ao)] I, the former being the conditional covariance of 

the estimate for a given value of ao, the latter being the 

average conditonal covariance of the estimate, averaged over 

A 

- A 

the ensemble of all possible true values of ao. 

(3.7.1) 

(3.7.2) 

A where LA n = L,(ao,Zn) 

A -1 [Jn(ao)] 

average conditional covariance cannot be explicitly calculated. 

Fortunately, Jn(ao) is not needed in finding a but is 

only used in evaluation of the estimator performance over the 

is a highly nonlinear function of ao, so the 

A A -1 
n' 

A -1 ensemble of all possible ao. To find Jn(ao) some numerical 

evaluation of (3.7.2) is necessary. 

From (3.3.37) and (3.3=20), 
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A - (Xn - x q= n l n  n / n  (3.7.3) 

From (3.3.37) and (3.3.24) 

where 
A 

Axn = x - x n n l n  

A 

A z i = z  - H x  i i iJi-1 

Then it f o l l o w s  t h a t  

(3.7.4) 

(3.7.5) 

Using t h e  s a m e  p rocedures  as  i n  o b t a i n i n g  (3.4.9), a f t e r  

a l g e b r a i c  man ipu la t ion ,  it can be shown t h a t  

(3.7.6) 
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h h m  

where 

ax’ axn n nln 
Gjk nln = ‘[+ a5k 

It can also be shown that 

(3.7.7) 

If the diagonal elements of R and Q (5)  are mutually 

independent and are distributed with a truncated normal 

distribution, then 

(3.7.8) 

where Sk represents the appropriate element of R or Q and 
1 - 1 ~  and ak are the mean and variance of the corresponding 

untruncated normal distribution. 

2 

If the diagonal elements of R and Q are distributed with 

a Gamma distribution, then 

(3.7.9) 

where ak and pk are parameters of the corresponding Gamma 

distribution. 

All of the necessary quantities appearing in (3.7.6) 

can be computed using recursive relationships. 
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m m 
(3.7.10) 

(3.7.11) 

(3.7.12) T st 
a R J  J = [ ( I  - AnHn) - ( I - A H )  aRJ  J n n  ] n 

apn  n = (I  - AnHn) b ( I - A H ) T  n n  
a Q J J  a Q J J  

(3.7.13) 

(3.7.14) 

a R  R where aAn = ($ a p n  n Hn T - An 3) 
a Q  

The p rope r  i n i t i a l  c o n d i t i o n s  f o r  t h e s e  r e c u r s i v e  

r e l a t i o n s h i p s  are:  

(3.7.17) 

(3.7.18) 
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J A (a ) can be partitioned into submatrices, corresponding 
n o  

to xn and 5 .  

where 

Then 

and 

where 

and 

- 
Neither P nor w can be computed analytically. A n - nln 

nln 

first order approximation to P and could be computed 

by expanding P 
nln 

and Wn about e. 

(3.7.19) 

(3 7,201 
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, 11111 

where 

But 

and 

A t o  = 5 ,  - F  

= F 

where is the mean of the a priori distribution of true 

parameter values E o  and cov(5 0 ) is the covariance of this 

distribution. Then 

1 
2 i' 

n = Pii n n  (r) + Tr[ [p)r COv(~o) 

It is obvious that extensive computation is necessary to 

compute these quantities so that this technique is not particu- 

larly attractive. 

An alternate method of evaluating Pnin and would be 

to select a sample of 5 chosen from the distribution f(E) and 

then employ the approximations 

K - 
nln K P 

j= 1 
K 

Of course, the sample size K must be sufficiently large to 

ensure that this approximation is reasonably good. 
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r 

I 

The simplest approximation 

- 
Z P  P nln n[n 

to make would be 

(TI 

This approximation may be adequate in applications where the 

range of 5 is limited, but caution should be employed in its 

use. 
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Chapter 4 

SUBOPTIMAL SOLUTIONS OF THE ESTIMATION PROBLEM 

4.1 Introduction 

An exact or iterative solution of the likelihood equations 

of Chapter 3 requires extensive computation as the solution 

is generally found only after several passes over the measure- 

ment data. In many applications such computation is not 

feasible or a "real time" solution is needed. In such situa- 

tions, approximate solutions are necessary, either to reduce 

the required computation and/or to obtain a real time solution 

of the parameter estimation problem. A s  would be expected, 

the quality of the estimator is degraded in such cases, but 

often the degradation is not serious. However, there are 

certain special cases when some of the approximate solutions 

are noiz unique or are so highly biased that their use is 

questionable. 

This chapter deals with the derivation and evaluation 

of several suboptimal approximate solutions. A l s o  included 

is a summary of possible parameter estimators suggested by 

other authors. The list of approximate solutions is not 

exhaustive but is meant to illustrate several techniques that 

are availaDle to obtain an adequate solution of the problem. 

4.2 Linearized Maximum Likelihood Solution 

The iterative solution of thc maximum likelihood equations 
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. 
of Chapter 3 was based upon successive relinearization of the 

maximum likelihood equations about trial values of the para- 

meters obtained from the previous iteration, continuing the 

process until convergence. If the initial trial value of the 

parameter is "sufficiently close" to the true value, a single 

correction to the initial estimate based upon a linear approxi- 

mation to the equations is often adequate for the solution. 

This single linearization is the basis of the linearized 

As in Chapter 3 ,  

A 

maximum likelihood solution. 

the solution of 

is sought. If a. is ,he trial (a priori) ralue of the esti- 

mate, then from (3.6.4) the linearized maximum likelihood 
A 

solution aR is found from the equation 

(4.2.1) 

A A  A 

The linearized solution a 

of full rank. Both Jn(ao) and aa ,, can be evaluated in 

real time since they represent the conditional information 

matrix and the score evaluated at the a priori estimate of 

the parameter a .  

is expressible as a linear combination of the conditional 

information matrix at the previous time, Jn-l(ao), and a 

term which represents the additional information about the 

can be found as long as Jn(ao) is 
A "  R ("E) 

a0 

A 

The conditional information matrix f ( a o )  

A "  
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parameters contained in the measurement at time n. 

the score - ,, is expressible as a linear combination of 

the score at the previous time, - ,, ,, and a term which 

is a function of the measurement at time no Thus as the 

measurements are taken, the conditonal information matrix 

Similarly, 

(i?) a0 ( a $ - l )  
a0 

and the score can be computed as running sums, and the 

linearized solution (4,2.1) can be found in real time. 
a LA n 
aa Because - is a highly nonlinear function of a, there 

is no simple way to determine when the above linearizing 

approximation i s  valid, or more importantly, when the linear- 

ized solution is "closer'F to the true value than the a priori 

estimate. Several measures can be used to determine if the 

linearized solution is closer to the true solution. If the 

linearized solution is valid, the following inequality should 

be satisfied, 

If this is not satisfied, another trial value 

found and the procedure repeated. Evaluation 

requires a recomputation of the score and the 

information matrix at the value a = a t ,  so in 
A 

[$)I" a 
0 

A 

of a. must be 

of this measure 

conditional 

this sense the 

linearized solution is not real time. However, numerical 

results indicate that this linearized solution converges over 

a wide range of a. so that in many applications this check is 
A 

not necessary. 

The asymptotic conditional covariance of the linearized 
A "  
n o  solution is approximately [J (a 1 ]-lo A better approximation 
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can be obtained if computational capacity allows evaluation 

If it is known that there may be a significant error in 

the a priori estimate of a ,  then use of the linearized tech- 

nique may be questionable. However, in this situation a 

combination of an iterative solution plus a linearized solution 

could be used. Sufficient measurements are taken to obtain a 

relatively good estimate of a by use of the iterative proce- 

dures of Chapter 3 .  Subsequently, the linearized solution 

is employed, using the results of the iterative procedure 

as the point about which to linearize. 

A third procedure, sequential relinearization, could also 

be used. It is quite similar to the linearized solution 

except at regular intervals of time, which may encompass 

several measurement times, the best linearized estimate of a 

is used to compute subsequent values of the information matrix 

and the score. At each relinearization, the score must be 

corrected to account for having used a different value of a 

in its computation than the newly obtained value, 

the estimate of a that was obtained at the previous relineari- 

A 

Let al be 

zation and used from then until the present in the computation 

of the score, and let a2 be the current linearized estimate, 

Expanding the score in a Taylor series about a 

A 

A 

1' 

1 3 3  



Using the approximation 

the corrected score is given by 

As with the linearized solution, this procedure should be used 

only after a sufficiently accurate estimate of a is obtained, 

either from the a priori estimate or through use of the 

iterative procedure. 

4.3 Near Maximum Likelihood Solution _ _  

By a suitable approximation to (3 .3.38)  a "near maximum 

likelihood" solution can be found which reduces the necessary 

computations considerably. In this solution, the state esti- 

mate is defined to be the maximum likelihood estimate which 

uses the near maximum likelihood estimates of R and Q ( 5 )  

to compute the filter gains, and estlmates of 5 are found 

from the solution of the "pseudo" likelihood equations: 

where A n  is the "pseudo" likelihood function defined by 

( 4 . 3 . 1 L  This equation is obtained from (3 .3.38)  by retaining 

only the most significant terms. The savings in computation 
~ 

axi i-1 arise from not having to compute appearing in the a5 
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k ’  likelihood function and GiIi - 
for the conditional information matrix (3.7.6). 

an array with Bx(y+v) elements and Gifi-l is an array with 

B2x(y+n) elements. If all of the symmetry properties of 

‘1 Gi i-1 

appearing in the exEression 
axili-l is 

a E  
k ’  

are utilized, the number of independent elements is 

g(’i1’ (’+‘) (’+‘+l). If the state, driving noise, and 2 X 2 

measurement are of moderate dimension, the number of compu- 

tations involved in calculating these quantities can be 

considerable, so that not having to perform these calculations 

can. result in a significant saving in computer time. 

If convergence of (4.3.1) to a unique solution is obtained, 
A A 

the asymptotic distribution of x 

normal with conditional covariances 

and 5, are approximately 
nln 

A 

The conditional information matrix J ( 5 )  is not the same as 

the information matrix of Chapter 3 because of the omitted 

terms in the likelihood function. Here 

n 

A comparison of (4.3.2) with (3.7.6) will show that the above 
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* 
information matrix is smaller than the information matrix of 

Chapter 3 .  Thus, as would be expected, the covariance of 

the parameter estimates will be larger when the pseudo likeli- 

hood equations are used than when the full likelihood equations 

are solved. 

Numerical results indicate that the iterative solution 

of the pseudo likelihood equations when the information 

matrix (4,3.2) is used as an approximation to the negative 

gradient of the likelihood equations may present difficulties. 

This is because in some circumstances J given above may be 

nearly singular and using its inverse in the solution may 

result in an unstable iterative procedure. However, these 

same numerical results show that the pseudo likelihood equa- 

tions do have a unique solution, but they must be found using 

other techniques in the iteration algorithm, say a fixed 

step size sweep looking for zeros of the pseudo likelihood 

equations 

n 

In this section, explicit "real time" solutions for the 

estimates of R and Q are sought. As will be shown, such 

estimates are approximations to the maximum likelihood solutions 

and on any given trial may be highly biased. However, if the 

r--- a positive definite matrix A is said to be smaller than 

another positive definite matrix B if the matrix (A-B) is 

negative semi-definite, 
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a priori estimates of R and Q are sufficiently close to the 

true values, such estimators will provide reasonable estimates 

with considerably less computation than the estimators pre- 

viously discussed. Even if the estimates are biased, they 

provide useful information. If the estimates differ consis- 

tently and significantly from the assumed a priori values, 

then there is good reason to doubt the accuracy of the 

a priori values, ven though the biased estimates do not 

\ 
necessarily repres e, nt better estimates of R and Q. In other 

words, the explicit estimates will indicate if there is a 

significant error in ‘the a priori values of R and Q even if 

they do not tell how to correct this error. In this sense 

their use is related to testing a hypothesis on the values 

of R and Q as discussed in Chapter 5. 

These approximate estimators are obtained as approximate 

solutions of the pseudo likelihood equations (4.3.1). 

The last term allows introduction of a distribution function 

of R and Q so that a priori estimates can be weighted with 

the estimates derived from the measurements alone, For this 

approximate solution it is convenient to form estimates of R 

and Q which are independent of this distribution function, 

and after such estimates are obtained, then the a priori 

estimates and their associated covariances are considered in 

obtaining a combined estimate for R and Q. Thus, initially, 

the solutions of the following equation are sought. 
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aBi 

i=l ac’ 

n 1 Tr (AB:’ -) = 0 (4,4.1) 

where T -1 Azi Azi Bi -1 -1 AB? = B~ - B~ 
1 

Using the results of Appendix A, (4.4.1) becomes 

n 
(4.4.2) [ (ABf’)jJ + Tr(ABllHi A apl 1 1 HT) 1 = 0 

aR” i=l 
n 
xTr(AByl Hi HT) = 0 ( 4 . 4 . 3 )  

aQ” i=l 

As the equations stand, no explicit solution for estimates 

of R and Q is possible, so further approximations must be made. 

When these approximations are made, there is a real question 

of existence of independent solutions of the resulting equations 

for the unknown elements of R and Q. Even if there are suffi- 

cient independent equations, there is no general way to obtain 

a closed form solution of the nonlinear relationships. If R 

or Q is to be estimated separately, there is no difficulty in 

obtaining a reasonable solution to the problem. Unfortunately 

the question of simultaneous estimation of these quantities 

from the above equations is not well resolved. The solutions 

given below represent separate estimation of R with Q known 

and estimation of Q with R known. The two solutions can be 

used, with caution, to simultaneously estimate R and Q, 

realizing beforehand that the resulting estimates are not 

independent, This dependency can result in biased estimates 

which fail to distinguish between errors in R and Q. However, 
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as mentioned previously, some useful information can be 

derived from such biased estimates. 

It can be shown that for many applications 

HT << 1 
a R J  J 

so that ( 4 . 4 . 2 )  becomes 

But 

n 
T -1 jj ) = o  -1 -1 1 (Bi - Bi Azi Azi Bi 

i=l 

(4.4.4) 

A A A 

= x  + ’ili HTR-’(~~ 1 - Hixi I i-1 1 ili i I i-1 Since X 

it can be seen that 

A 

- - (I - HiPili HTR-’) (zi - Hixi I i-1 1 

= R ( R  -1 - R - ~ H ~ P ~  I HTR-’) azi 

-1 = R Bi Azi 

Defining 

then -1 -1 Bi Azi = R Azi 
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and (4.4.4) becomes 

Or 

n 
[R -1 (R - HiPili HT - Azq Azi T )R -1 ] jj = 0 

~ 

i=l 
n 

i=l 

It is still not possible to solve (4 .4 .5 )  for R as Pili and 

Azi are highly nonlinear functions of both R and Q. However, 

if either the a priori values of R and Q or some estimates of 

these quantities are used to compute A z o  i and P ili’ then the 

estimate of R can be defined as 

n 
* I*T * HT)jj R3’ n = n 1. 1 (Azi Azi 

i=l 

A * .  

+ HiPili 1 (4 .4 .6 )  

* * 
where Azi and P are computed as functions of either the ili 
a priori estimates of R and Q or some previously obtained 

estimates. 
7 , .  

A recursive relationship for R’j can be obtained if n 
.I. 4. h A 

are not functions of R or Qn. n AzA- and P ”  n! n 

Equation (4,4.7) is not the only approximate solution that 

could be reasonably obtained from ( 4 . 4 . 4 ) .  Rewriting (4 ,4 ,4 )  

[Bi -1 (Bi - A z ~ A z T ) B ~ ~ ] ~ ~  = 0 

i=l 

1 4 0  



If the estimation process has reached a steady state, 

that is, Bi II: constant for all i, then an estimate of R can 

be defined by 

* * 
where Azi and 

a function of a priori values of R and Q or some past estimates 

are equal to Azi and Pili-l computed as 

of these quantities. The form of (4.4.9) is not as desirable 

as 
n 

(4.4.6) because Rn is not necessarily positive definite. 

If some of the squared residuals are small compared with 

HiPili-1 HT it then some of the terms in the above sum can be 
* 

negative. If this occurs often, then the resulting estimate 

of R may have negative diagonal elements. However, the esti- 

mator has the advantage of not being a function of the value 
* * 

of R that is used to update Azn and Pnln-l at time n. This 

can reduce possible bias problems in the feedback estimator 

discussed later. The estimator of the form (4.4.6) is the 

one studied further. 

Obtaining an explicit estimate of Q is not as straight- 

forward as obtaining the estimate of R. There are many 

approximate solutions to (4.4.3) for Qn depending upon the 

nature of the approximations made. The solution given below 

is but one of several possible solutions, but it is felt that 

it has the advantage of simplicity and wide applicability. 

n 
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By manipulation of ( 4 . 4 . 3 )  it can be shown that 

n 
apili-l T Tr (ABylHi * Hi) aQ'J i=l 

n e 

i-l (Pi j i-l-P -AxiAx. T ) P -1 
a:;i;-l] ili 1 ili-1 

i=l 
A 

where Axi = x - x  - .  - 'ili-1 H ~ B - ~ A ~  i i i A "  
ili ili-1 

T Define Ui = @(ini-l)Pi-lli-l @ (i,i-1) 

Then ( 4 . 4 . 3 )  becomes 

But 

so 

- T 
- ui + riQri 'i I i-1 

. .  
r ]JJ = o (4.4.10) (riQrT -AX.AX T - pili + u~)P~~~.~ -1 E['-' i i-1 1 i  

i=l 

Equation (4.4.10) cannot be solved explicitly for Q, so 

additional approximations are necessary. If it i s  assumed 

that Ti and are approximately constant for all i, then 

(4.4.10) becomes 

1 4 2  



n 

The equation above is satisfied if 

n 
+ Ui) = 0 - 'ili 

T T 1 (riQri - ax.axi 1 

i=l 
(4-4.11) 

n 

i=l 

If 'I' does not exist, the generalized inverse of r 
used. (See Appendix A for discussion of generalized inverse.) 

is to be i 

In general the dimension of the driving noise vector is less 

than or equal to the dimension of the state, in which case 

( I 'T I ' , ) - '  exists and the generalized inverse of r is 
1 1  i 

T -lrT 
r! = viri) i 

The estimate of Q is defined as 

n 

i=l 

* * * 
and Ui are computed as functions of the 'ili' where Axi, 

a priori estimates of R and Q or some past estimates. If 
A A * * * 

and Un are not functions of Rn or Qn, a recursive 'nln' 
relationship can be obtained. 
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Two classes of estimators of the form (4.4.7) and 

(4.4.13) exist depending upon what use is made of past esti- 

mates of R and Q. 

1) no feedback estimators 

2 )  feedback estimators 

In the no feedback case, a priori values of R and Q are 
* 

used to compute the quantities denoted by a in the estimator 

equations. In the feedback case these quantities are computed 

as functions of past estimates of R and Q o  At each stage the 

best available estimates of R and Q are used to update the 

starred quantities. If feedback is employed and the variance 

estimation process converges to the true values of R and 

Q, then the state estimate x will converge in most applica- njn 
tions to the optimal state estimate that would be obtained 

if the true values of R and Q were known a priori. However, 

using this estimation scheme, convergence is not guaranteed. 

In fact, numerical results indicate that if the a priori 

values of R and Q are significantly in error, the process 

will converge but to biased and incorrect estimates of the 

variance parameters. Techniques for evaluating the perfor- 

mance of the feedback and no feedback estimators are given 

next. 

A *  

The two measures which seem appropriate for evaluating 

the performance of the explicit suboptimal estimators are 

the mean and mean square error of the estimates of R and Q. 

In the preceding section, estimators for the diagonal elements 
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of R and Q were developed, resulting in (y+rl) estimator 

equations. The mean square error matrix of such estimates is 

a (y+q) x ( y + ~ )  matrix, which includes the mean of all 

quadratic functions of the errors in each component of the 

diagonal elements of R and Q. Such a matrix is most diffi- 

cult to compute, so for the purposes of this development, only 

the diagonal elements of such a matrix will be considered. 

As mentioned in Chapter 2, a distinction must be made 

between conditional and unconditional expectation operators. 

The same notation as in that chapter will be used to make 

this distinction. 

First, the performance of the no feedback estimator will 

be discussed. From ( 4 . 4 . 7 )  

^jj is The conditional expected value of R n 

This conditional expected value is conditioned upon the fact 

that the a priori estimates Ro and Qo are used to compute the 

filter gains while the true values of these covariances are 

R and Q .  Averaging is performed over the ensemble of all 

driving and measurement noises as well as all possible initial 

state conditions. 

A A 
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%* - * A *  

- H x  n nln - vn - HnXnln AzA = zn 

* *T T HT - HnAnR - RAn Hn 
= + HnPnln n 

where HT) (Ro + HnPnln-l n An - 'nln-1 n 
* T A  * - * 

A * 
unless Ro = R 

nln 
(not P 'L* %*T - 

- E(xnlnxnln) A 

P 
nln 

and Q = Q) 
0 

* 
is no t  a random variable under 

and 
* * nln In the no feedback case, P 

n b  the expectation operator, so E (P = P nln 

This can be expressed as 

where 

n 
- A 1  - - AFi Fn n 

i=l 

(4.4.14) 

* * - AnR = P HT and 
A A * 

If R~ = R and Qo = Q, then P nln - 'nln' nln n' 
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f r o m  the definition of AFn it can be seen that AFi = 0, 

f o r  all i. Then 

A A A 

If Ro # R or Qo # Q, then AFi # 0 and Rn is biased, the bias 

equalling Fn. 
A 

The unconditional expected value of Rn fo l lows  from the 

above. 

Here averaging is done over the ensembles mentioned above 

and also over the ensemble of all possible R and Q. 
- 

By definition E(R) = R, where E is the mean of the 
distribution of all possible R values, and 

n 
E(Fn) = A n 2 E(AFi) 

i=l 

But E(AFi) = HiE(Pili)Hi T + HiPiiiHi * T  - H.A.E(R) * - E(R)Ai *T Hi T 
1 1  

E(Pili) can be computed recursively using (2,3.43) and (2.3.44) 

* * *, *T 
E(Pili) = (I-AiHi) E(Pili - (I-A~H~) + A ~ R A ~  

T = (i, i-1) E (Pi-1 I i-l (i,i-l) + riurT E ('i I i-1) 

where is the mean of the distribution of all possible Q values. 
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Then 

and 

T * *, - *T T HiFi I iHi + Hipi  1 iHT - H . A .  R - RAi H 
1 1  i 

E ( A F ~ )  = 

If the a priori values of R and Q are assumed to be equal to 

the means of their respective distributions, then 

- A - A 

Ro = R and Qo = Q 

and it can be shown that 

E ( A F i )  = 0 

A .  E(RJ~) = -1 R j 
n Then 

A 

Thus Rn is an unbiased estimator of R across the ensemble of 

all possible R and Q. 
A A 

However, if Ro # E or Qo # zf then 
.. 

E(AFi) # 0 and Rn is biased, the bias equalling E ( F  n ) o  

The measures of error of the estimator are chosen to be 

the expected squared deviation of the R estimate from the 

true value, or c[(Rn "jj - Rjj)21 and - Rjj)210 
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I 7  -111 II I 
E[(;~J - E ( ; ~ J ) ) ~ I  can be computed recursively by noting that 

The diagonal elements of ( 4 . 4 . 7 )  are squared and the condi- 

tional expected.value then evaluated. Use is made of the fact 

that the residuals A z i ’  are zero mean normal variables in 

the no feedback case, and the approximation 

is used., It can be shown that as the filter approaches 

optimality (Ro -t R, Qo -+ Q ) ,  the above approximation is 

identically satisfied. Using the above approximation and 

A A 

after extensive algebraic manipulation, 

In this expression, (F:j)2 is due to the bias of the estima- 

tor and GiJ is due to possible deviations from this bias. 

The unconditional mean square estimation error follows from 

the above. 
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Evaluation of E ( G A 1 )  and E [  (Fn j j  ) 2 ] is extremely complicated 

so the details of their evaluation are given in Appendix B. 

Only the results of that evaluation are given here, 
A - h A - 

Under the assumptions that R = R and Q, = Q ,  then 
0 

(4.4.17) 

where is a diagonal yxy  matrix whose diagonal elevents 

P 

is a diagonal qxrl matrix whose diagonal elements Q 
- j j  2 are ~ [ ( ~ j j  - Q 1 

is a yxy matrix defined by rill C 

k=l 

is a BxB matrix defined by 
nlk 

x 

is a yxq matrix defined by 
4 1  

L 

k= 1 

* 
Dk = I - AkHk 
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where % 

F' n 

- 
'n 

A = c  
1 nl 

n 

- I  

k=l 
n 

1 

1 
k=l 

Evaluation of the no feedback Q estimator is similar to 

that of the R estimator. F r o m  (4.4.13) 

where 

and 

* "* A* 
Axn = x nln - Xnln- 

The conditional expected value of G i j  is given by 

"-1 p* P + P  - * p*-l - * -1 
n ('nln nln 'nln njn-1 nln-1 'nln-1 nln-1 nln where AMn = r 

* T-1 
f un - UnUn 
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2 A .  * 

E [ ( 6 2 j  - E (QJ3)  ) J can be computed r e c u r s i v e l y  by not ing  t h a t  n 

The d iagonal  elements of (4.4.13) are squared and t h e  condi- 

t i o n a l  expected va lue  then  eva lua ted .  U s e  i s  m a d e  of t he  

approximation 

Using t h i s  approximation and a f t e r  ex tens ive  a l g e b r a i c  

manipulat ion 

J j j  = (F) j j  f -[((Q 2 f AMn - Tn) * j j ) 2 ]  
2 

2 n Jn-l  w h e r e  n 

* -I * * T-b 
n (’nln - Un)rn  Tn = r 

E[(;:’ - Q j j  ) 2 J = Jij f (Mn j j  ) 2 so 

( 4 . 4 . 2 0 )  

( 4 . 4 . 2 1 )  

I n  t h i s  express ion ,  M j j  i s  due t o  the bias of the es t ima to r  

and J:7 is  due t o  p o s s i b l e  d e v i a t i o n s  from t h i s  bias. 

uncondi t iona l  mean square  Q e s t ima t ion  e r r o r  follows from 

n . .  
The 

t he  above. 
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A l s o  from Appendix C, 

where 

When feedback is used, the estimates of R and Q are used 

to compute filter gains, so that these filter gains become 

random variables under both the conditional and unconditional 

expectation operators. 

nonlinear functions of the R and Q estimates becomes impracti- 

cal unless approximations are made. The nature of these 

approximations is E [f (x) 3 

function of a random variable x. As before 

Evaluation of the expected values of 

= f (E: (x) ) , where f (x) is a nonlinear 

* * 
are computed using the past esti- 

nln 
However, now Az; and P 

mates of R and Q. The conditional expected value of RAj is then 

A " A  A * 
P is a function of Rn - l,...,Ro,Qn,l,...,QO, so that it now 
nln 
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* * 
becomes a random variable and E (P ) # Pn, as was true in 

nln 
the case of the no feedback case. 

E(V v T ) = R as before n n  where 

%* T * T  
E(Xnln n n n n  v ) = e ( A v V )  

* 
In the feedback case, An is a random variable so it cannot 

be taken outside the expectation operator. 

* - * HTi-l 
An - 'nln n n-1 

A A * 
v is independent of An as past values of R and Q are used n * 

so n o  to compute A 

* * *T T 
= R + Hn€(P )H: - Hn€(An) R - R E ( A ,  )Hn 

nln 
S o  ~ ( A z l l  Azn 
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* * *T T Define AFn = Hn€ (Pnln)Hn T 4- HnE (Pnln )HT - Hn&(An)R - RE(An )Hn 

Then ( 4 . 4 . 2 4 )  

n 
1 - where Fn - n 1 AFk 

k = l  

* 
Approximations must be used to evaluate E (Pn I n) , E (Pn l n )  I 

and E (A,). 
* 

so 

The following approximations are used. 

Using these approximations, &(Pnln) can be evaluated recursively. 

( 4 . 4 . 2 5 )  

- 
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* 
Using the same approximations, &(Pnln) can be computed 

recursively. 

(4,4.27) 

A 

The unconditional expected value of"Rn follows from the 

above. 

k=l 

klk)' Additional approximations must be made to evaluate E(P 

E(PLlk ) ,  and E(E (Ak)R), namely 
* 

Similarly, 

(4 .4.32)  
1 5 8  



(4.4.33) 

In a similar fashion, the conditional and unconditional 

expected value of the estimate of Q can be obtained. 

(4.4.34) 

where after algebraic manipulation, AMn can be expressed in 

the following form 

- - AMn Q - Q + fn[(R - R) + Hn(e(Pn 
e 

(4.4.35) 

where here 

Similarly, 

where E(AM ) is evaluated approximately by using unconditional 

expected values instead of conditional expected values in 

(4.4.35). 

n 

where here 

L 
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The mean squared estimation error of the R and Q 

estimators can be found approximately by using the results 

by E(Pnln) or nln 
of the no feedback estimators replacing P 

E(Pnln), PnJn by &(Pnin) or E(P ) ,  etc., the conditional 

or unconditional expected values being used depending upon 

* * * 
nln 

whether the conditional or unconditional mean squared error 

is being evaluated. 

Once estimates of R and Q have been found by the above 

procedures, some way must be found for incorporating the 

a priori estimates of R and Q into a combined estimate of 

these quantities. Presumabl.y, along with the a priori esti- 

mates of R and Q there is available some measure of the quality 

of these estimates, say the variances of the estimates. 

Expressions have been developed for evaluating the quality 

(mean square error) of the estimates based upon measurements 

alone. Then a reasonable, but not necessarily optimal, tech- 

nique for combining these two estimates would be in some 

invelrse variance fashion. In the case of the R estimate, 

* * *  
where Rn is the combined estimate, Rn is the estimate based 

* 
upon the measurements alone, and Ro is the a priori estimate. 

1 is the unconditional mean square R estimation error 

j j  2 
RO A 

matrix E[ (Rn-R) ... ) ] 6 and is the variance of the 
R, jk 
" a priori estimate of R, and 
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-1 c * =  
Rn 

-1 E +  
Rn 

-1 c 
RO 

- A - A 

If E(Rn) = R and Ro = R, then 

Similar expressions can be developed for a combined Q estimate. 

4.5 Review of-Procedures Suggested by Others 

Several authors have studied the problem of optimal 

filtering when the parameters describing the statistics of 

the measurement and driving noises are not accurately known. 

A brief summary of the results of their work is included 

in this chapter. As will be seen, the estimators are simple 

to use but are suboptimal, that is, no optimality condition 

is satisfied by the solution. In many applications the 

resulting estimators may be biased or may not actually exist. 

However, in some applications, such estimators may provide 

useful solutions to the problem. 

A technique of estimating R and Q developed by Shellenbarger 

(Ref. 31) utilizes the theory of maximum likelihood estimation 

outlined in Chapter 2 ,  but applies the theory only to obtain 

an approximate solution. His technique is based upon estima- 

ting the parameters of R and Q using the information obtained 

at one measurement time and then performing some average over 

current and past estimates to obtain a combined estimate. If 

there is insufficient information available at each measurement 
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time to estimate all of the unknown elements of R and Q, then 

his technique cannot be used. Unfortunately, many interesting 

applications of optimal filtering have a small dimension 

measurement compared to the dimension of the state so that 

there may be little information at each measurement time upon 

which to base estimates of R and Q. However, if it is assumed 

that the driving noise statistics are precisely known a priori, 

then there is always sufficient information in the measure- 

ments to estimate the statistics of the measurement noise. 

Given n measurements zl,..,z and the conditonal maxi- n‘ 
mum likelihood estimate of the state prior to each measure- 

ment (conditioned upon the assumed values of R and Q), the 

joint probability density function of the n measurements can 

be written as 

k z = Hkxk + v k where 

Given that all the assumptions used in deriving the maximum 

likelihood state estimator of Chapter 2 are valid, then 

where 
A 

Azk - - zk - H x k klk-1 

Bk = Rk -k HkPkik-l HT k 
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Therefore 

1 T -1 --(A2 B Azk) 2 k k  e 1 n 
f(z1,*.,zn) = 7T 1 / 2  k = l  ( 2 ~ )  y'2 I Bk 1 

For estimation of R with Q1, ...,Q known, Shellenbarger n n 
suggests maximizing f(zl,..,z n ) with respect to Rn and solving 

for R . However, he realizes that the solution depends upon 

the unknown R1,..,Rn,l. 

would have to be maximized with respect to Ri(l - < i - < n) and 

A 

n 
To solve for all R f(zl,..,zn) i' 

A 

the resulting equations solved for Ri, Shellenbarger dismisses 

this approach as behg infeasible for any nontrivial system. 

Rather than simultaneously estimating all Ri, he suggests 

that the single measurement conditional likelihood function 

f (znl z ~ - ~ ,  . . ,zl) be maximized with respect to R 
estimates of R1,..,Rn,l to compute the necessary quantities 

appearing in this likelihood function. 

using past n' 

(4 .5 .2 )  

( 4 . 5 . 2 )  is set to zero and the resulting equation solved for 

Rn . x  nln-1 and 'nln-1 
defined as the maximum likelihood estimate of the state and 

A 

are not precisely known as they are 

its covariance conditioned upon the true values of R1,...,Rn,l. 

For this solution they must be evaluated using some average 

of the estimates of the past Ri. 

procedure are 

The results of such a 

(4.5.3) 
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where 
* 

n 

* 
Hn Xnln-l Z * k Z  - 

n n 

A "* * 
X n I n-1 and 'nln-1 are the values of xnln - and 'nln-1 

evaluated recursively using some average of past estimates 

of R at each updating time. 

defined by 

Then the estimate of Rn is 

HT HnPn/n-l n 
A * *T * 
Rn = Azn Azn 

- ( 4 " 5 . 4 )  

A 

The conditional expected value of Rn is 

) represents the conditional covariance of the %* 'L*T 
E (Xn 1 n-lxn 1 n-1 
state estimation error, conditioned upon the true values of 

R and (1 and the fact that estimates of the past values of the 

measurement noise covariance matrices have been used in com- 

) represents the average (over puting filter gains. 

the ensemble of all measurement and driving noises) computed 

* 
E ('n 1 n-1 

state error covariance matrix. As was shown in the previous 

section, when past values of estimates of R or Q are used to 

compute filter gains, evaluation of these two quantities is 

exceedingly difficult and in general cannot be performed 
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without approximations. Shellenbarger states without proof 

that 

and thus concludes that 

(4 .5.5)  

(4.5.6) 

This demonstration of unbiasedness depends upon the validity 

of ( 4 . 5 . 5 ) ,  something that Shellenbarger does not adequately 

discuss. 

The case of estimating Q with R1,..,R known is consid- 

erably more complicated that the previous case. The solution 
n n 

depends upon the rank of the measurement matrix H . The 

forcing function matrix r is presumed to be the identity 

matrix. The single measurement conditional likelihood func- 

n 

n 

tion is maximized with respect to Q using past estimates of 

Q,,.* rQn-l to compute the necessary quantities appearing in 

this likelihood function. 

n' 

(4 .5 .7 )  is set to zero and the resulting equation solved for 
A A 

Q,. As in the estimation of Rn, x ~ ~ ~ - ~  and 'n-1ln-l are 

i' evaluated using some average of past estimates of Q 

1 6 5  



* *-lH = o  T *-1 HnBn (H~Q,H: - cn) B~ (4.5.8) 

* T T 
C: 4 Azn * Azn *T - Rn - Hn (3(n,n-l)Pn-lln-l (3 (n,n-l)Hn where 

If Hn is square and possesses an inverse, then 

A A -1 * T-1 - 
Qn - Hn 'n Hn (4.5.9) 

A 

The conditional expected value of Q is then n 

(4.5.10) 

Again, Shellenbarger assumes that 

and thus concludes that 

A 

&(Qn) = Qn 

(4.5.11) 

(4.5.12) 

The same comments apply here as before concerning the validity 

of (4.5.11). 

If Hi1 does not exist, but (HTY-IH )-l exists, where n n  n 

A 

then a solution for Qn can be obtained from (4.5.8) by 
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finding Bn *-’ using the matrix inversion lemma and carrying 

out some matrix manipulation. 

Q, “ A  = ( H ~ Y ~  T - 1  H ~ )  - 1 T - 1 *  H Y c Y-~H~(H~Y;’H~)-~ 
n n  n n  (4.5.13) 

A 

The conditional expected value of this estimate of Qn is equal 

to (4.5.10). 

If neither Hi1 nor (H>i1Hn)-I exists, then a unique 

solution of (4.5.7) does not exist. However, by use of the 

generalized inverse of H a particular solution can be defined 

which satisfies (4.5.8) . 
n 

* T# A A H# 
Qn n ‘n Hn (4.5.14) 

where H! is the generalized inverse of H . 
then 

If (HnHZ)-l exists, n 

H: = H ~ ( H ~ H ~ )  T -1 (4.5.15) 

The conditional expected value of (4.5.14) using (4.5.15) is 

T T A 

n E(Qn) = Hn(H HT)-lH Q H (H HT)-’H n n  n n n  n n  (4.5.16) 

As with the explicit suboptimal estimator, the real 
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difficulty in the use of Shellenbarger's method is when the 

elements of Rn and Qn are to be estimated simultaneously. 

(4.5.3) and (4.5.8) must be solved for Rn and Qn. However, 

there is no possibility that these equations can be solved 

uniquely for these two quantities since the equations are not 

independent. In essence, Shellenbarger suggests that the 

number of unknown elements of Rn and Q 

number of unknowns is equal to the number of independent 

equations. 

unknown elements in Rn is reduced from y(y+1)/2 to y o  

However, a solution for these diagonal elements and Q is 

possible only when there are redundant measurements, or 

(H;Hn)-l exists. 

be reduced until the n 

If Rn is assumed to be diagonal, the number of 

n 

In such a case, 

* *T * *T A 

c(Rn) (I-N n n  *N c(AznAzn - NnAznAzn Nn) (4.5.17) 

where c( ) represents a column vector whose elements are the 

diagonal elements of the matrix argument and 

*N is a matrix whose elements are the squares of the 

n 

pJn n 
corresponding elements of N . 

A A 

Once the diagonal elements 6f Rn are obtained, Q, can 

be obtained from (4.5.13) using estimates of R in place of 

the unknown Rn. 

only those cases when redundant measurements are taken at 

n 
Clearly this technique has applicability in 

each measurement time. In most applications the dimension of 
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the state is large compared with that of the measurement, in 

which case the unknown elements of R and Q cannot be simul- n n 
taneously estimated by Shellenbarger's method. 

Dennis (Ref. 5) uses an entirely different technique 

for obtaining estimators for R and Q, but as in the case 

of Shellenbarger's method, he essentially relies upon having 

sufficient information in each measurement to define esti- 

mates of R and Q based upon a single residual. If sufficient 

information is not available, or if some components of the 

driving noise are not observable from one residual alone, 

then Dennis suggests lagging the driving noise variance esti- 

mation with respect to the measurement noise variance 

estimation, that is, use past as well as current residuals 

to obtain some estimate of the driving noise covariance. 

Dennis obtains a functional relationship between certain 

residuals and the measurement and driving noises. From this 

relationship he postulates the form of the estimators. No 

criterion of optimality is used, and his proof of unbiased- 

ness and stability of the resulting estimation loop is 

questionable. 

At each measurement time, the existence of a minimum 

variance or maximum likelihood state estimator is presumed, 

with estimates of R and Q used to compute the proper residual 

weighting matrices. From the recursive state estimate updat- 

ing equation (2.3.381, 
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The assumed models for the state and measurement are 

x n = @(n,n-l)xn-l + I'nWn 

+ v  z = Hn xn n n 

Then the following expression can be obtained for the esti- 

mation error. 

%* "*  * %* 
X nln = x  nln - x n = (I-AnHn) @(n,n-l)xn-lln-l 

* * + ~ A ~ H ~  - I) rnWn + AnVn 

Consider the three residuals 

"* 
- HnXn n n 

rm A 

"m A "* 
n n n n  r = z  - H x  

n 

n- 1 

a y x 1 vector 

a y x 1 vector 

a B x 1 vector 

It can be shcvn that 

* * * %* 
rm = (I-H A )vn + H n (I-A n n  H )rnwn + H,(A,H~-I)@(~,~-~)~,-~I~-~ n n n  

(4.5.18) 

(4.5.19) n %* 
rm = v + H n n n  r w - Hn@(n,n-l)xn-lln-l n n 

* * * %* 
rs = Anvn + A n n n n  H l' W - AnHn@(n,n-l)xn-lln-l n (4.5.20) 

170 



These equations are singular in the sense that v and wn n 
can never be exactly determined from the residuals alone. 

However, in terms of squared residuals, some nonsingular 

mappings of averages can be obtained. 

Begin by considering the two residuals rm and r: in the n 
following form. 

Or 

where 

Hnrn 

* 
AnHnrn - 

Hn@ (n,n-1) 
?,* 
X (4.5.21) 1.1 - [AiHn@(n,n-j n-1 I n-1 

AnHn@ * (n,n-l) 
- - 

Consider the ith element of Fn. 

?,*j 
X n-1 I n-1 

( 4 . 5 . 2 2 )  
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i Squaring rn leads to 

(4.5.23) 

Assuming that vn and w 

normal random vectors with time independent statistics, then 

the only terms of interest in (4.5.23) are the first and last 

because the average values of the others are zero. Therefore 

are mutually independent zero mean n 

where ai is the sum of a l l  other terms in (4.5.23) and is by 

definition zero mean. 
n 

Next Dennis assumes that (4;) is a Rayleigh variable 
- 

having mean En or Qn as appropriate, where E 

vectors of the diagonal elements of Rn and Q,. 

and En are n 
Thus 

+ sn + 5, (4.5.25) 

where 2n is a matrix composed of the squared elements of K n‘ 
5n and 6, are zero mean random vectors, 
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where Ci is the jth column of Cn. T 

aT = (an,. 1 . ,an Y+B) n 

"m 2 

"m 
(rn) 

of rn and rs respectively. 

and (r:)2 denote vectors whose elements are the squares 

n 
(4.5.25) is central to Dennis's development of noise 

variance estimation. In particular, it can be seen that if 

i\t is of full rank then n 

Or 

(4.5.26) 

From an examination of (4.5.26) Dennis postulates the 

P n form of the estimator for R and Q based upon one set of 

residuals. 
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* * 
where Sn is the matrix Sn with Pn-lln-l substituted for 

The above estimates are not those used for the computa- 

tion of the filter gain matrices but rather some average of 

I past estimates. This allows for some "smoothing" of the 

single residual set estimates. 

n n 

j=1 j=1 

n n 1 w Q = I  
3 

j=1 j=1 

where uR and wQ are weighting factors that can be arbitrarily 
j j 

chosen. 

The conditional expected value of such an estimate is 

most difficult to obtain since the matrix Kn is a random 

function of the previous estimates of R and Q. Dennis does 

show that for scalar measurements and no driving noise the 

estimate R is to first order independent of variations in 

the value of R used to compute the gain matrix Kn. He states 

that this is true whether or not driving noise is present but 

does not show that the estimate Rn is independent of varia- 

tions in the value of Q used to compute Kn. He also states 

that the estimate 6; is independent of variations in Q used 

2* 
n 

2* 
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to compute Kn for a scalar state variable. 

statements mean with respect to the biasedness of the estimates 

in realistic situations is not clear. 

What all these 

If the matrix Rn is singular, then a slightly different 

procedure must be used. It is assumed that R and Q are 

constant or slowly varying in time. A time average of (4 .5 .25)  

is taken prior to inversion. 

n 

C ‘j 
j =m 

where R 
j 

n 

n 

j =m 

- 
R .  + 

3 

- 
Q .  + 7 

+ 

re arbitrary weighting f 

- 

n 
n j = l  

j =m 

j =m 

n r n  

j =m L j=m 

* 
R . S  
3 j  

ctor with 

R.S* ] 
i j  

Dennis attempts to show that for some n, the weighted 

2 matrix is nonsingular. However, using his own analysis, 

if the measurement matrix is time invariant, the weighted i’t 
matrix is always singular if 2 

j 

j 
itself is, thus limiting the 

j 
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applicability of the solution to cases when this is not true. 

Smith (Ref. 3 3 )  has studied the problem of real time 

estimation of the state and the measurement noise covariance 

but only obtains a suboptimal solution of the problem. In 

his dynamical model of the state, there may be noise driving 

the state but it is assumed that the statistics of this noise 

are precisely known. 

The state obeys the recursive relationship 

x =  n @ (n,n-1) X n-1 + w  n (4 .5 .27 )  

The measurements of the system state have the usual form 

z = Hn xn + vn n (4 .5.28)  

where zn is a y x 1 vector. 

is equivalent to y scalar measurements when the measurements 

are independent, or equivalently, when the measurement noise 

covariance matrix is diagonal. In this case, the jth scalar 

measurement at time n is given by 

This single vector measurement 

j 
n zj = hjT x + v n n n  

T here h: is the jth column of the matrix Hn. 

(4 .5.29)  

It is assumed that the initial value of the state is 

n normally distributed and that w is also normal. The distri- 

bution of each vn is also normal with zero mean and variance j 
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. .  
R”. n It is further assumed that RA’ can be represented as 

(4.5.30) 

where kj is a time invariant but unknown precision factor 

assaciated with each component of the measurement. Smith 

assumes that each kj has an inverted Gamma distribution which 

describes the a priori uncertainty in the value of kj. 

form (4.5.30) is used for Rn so that deterministic time- 

varying characteristics of Rn can be easily modeled. 

probability density function of each kj can be represented as 

The 

The 

= o  k < O  

where 1 c =  - 

and a and b are parameters of the distribution of k. The 

mean of this distribution is proportional to b. 

dk = - a b  
a-2 (4.5.32) 

0 

The joint conditional probability density function of 

the state x and the parameter k is given by n 

(4.5.33) 
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where Zn represents the vector of n measurements? Zn-l 

represents the vector of n-1 measurements, and 

( 4 . 5 . 3 4 )  

The conditional probability density function of the 

measurement z given k, xnf and Zn - is n 

-H x ) 
1 T -1 

('n n n - - ( Z  -H X ) Rn 2 n n n  e 1 
f(znlxn,k,Zn-l) = 1/2 

( 4 . 5 . 3 5 )  

n Since the components of the vector measurement error v 

are independent, Smith considers zn as a scalar since a vector 

z can be thought of as a sequence of scalar measurements as 

mentioned before. Thus all subsequent expressions involving 

the measurement zn can be thought of as expressions involving 

a component of a vector measurement. For notational conveni- 

ence the superscript j denoting the component is dropped. 

Then with Rn = k Rnom 

n 

n 

By Bayes' rule 

( 4 . 5 . 3 7 )  
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In Chapter 2 it was shown that 

A 

where Xn 1 n-1 is the maximum likelihood estimate of xn before 
is the conditional covariance of 

and B is the dimension 
A 

'n 1 n-1 the nth measurement, 

x n about its conditional mean x nln-1' 
of the state xn. 

covariance are functions of the unknown k. 

Both the state estimate and its conditional 

It will now be shown that f(xn,klZn) has a particular 

form and that this form is preserved after repeated measure- 

ments. 

It is assumed that the distribution of the initial state 
A 

and covariance P 
010 010' 

x is a normal distribution with mean x 
0 

Initially, x is independent of the parameter k so the joint 

probability density function of xo and k is 
0 

(4.5.40) 

The joint probability density function of the state and 

the parameter k immediately before the first measurement is 

given by 

(4.5.41) 
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It is easy to show that 

A T -1 A 1 --(X 2 l-xllo) pl~o(xl-xl~o) (4.5.42) 

where 
0 

where Q1 is the covariance of the driving noise wl. 

using (4.5.31) and (4.5.421, (4.5.41) becomes 

Then 

A A a 
f(xl,k) = C1 k e 

where 

Because of the form of (4.5.43), f(xl,k) is termed a normal 

inverted gamma probability density function. Then by (4.5.33) 

T 2  -h x ) 1 1 
--(a+3) -'[ (zl 1 1 f(xl,klZ1) = C2 k 2 e Rnoml 

where 

A A a b  + -  k 

(4.5.44) 

is the normalizing coefficient. 

After extensive manipulation, (4.5.44) can be written in 
A 

terms of new parameters xlll, PlI1, a', and b'. 
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A A 

(4 .5 .46 )  

(4 .5.47)  

(4 .5.48)  

b' - - A [ a  a+l b + (4 .5 .49 )  

a' = a + l  (4 .5.50)  

Thus, the joint conditional density function after the first 

measurement also has a normal inverted gamma form. 

Using the same procedures as above, it can be shown that 

f(xn,klZ ) has a normal inverted gamma form for any n. 

appropriate parameters of the density function can be com- 

The n 

puted using recursive relationships of the form shown in 

(4 .5.46)  - ( 4 . 5 . 5 0 ) .  Each component of the measurement has 

associated with it its own a, b, R and hn, which are nomn 
used in these recursive relationships when that particular 

type of observation is being considered. The resulting a' 

and b' are not updated again until another observation of the 
A 

same type is considered. On the other hand, ~ ~ l ~ - ~  and Pnln-1' 

being associated with the state xnf which is common to all 



observation types, are updated at each and every data proces- 

sing stage. 

Unfortunately, Eqs. (4 .5 .46 )  - (4.5.50)  cannot be 

computed in a real problem because they involve k, which is 
A 

and b' , an nln' 'nln, unknown. Thus in order to compute x 

estimate of k is required. Smith dismisses the question of 

strict optimality and observes that for large a the parameter 

b is almost equal to the mean of the k distribution. An 

estimate of k is then defined to be equal to the parameter b, 

and the 

A *  

X n 

* 

following estimation equations are obtained. 

A *  * T A *  
n = x  nln-1 + An(tn - hnXn 

* - 
nln - 'n P 

* * - 
An - 'n 

* I T *  

n-1 (4 .5 .51 )  

(4 .5 .52 )  *T A 

nom )An n 
h + k R  n-1 n 

A T *  

n n-lhn'(hnPn 1 n-lhn + Rnom 

a' = a + l  

(4 .5 .53 )  

( 4 . 5 . 5 4 )  

( 4 . 5 . 5 5 )  

It can be seen that (4 .5 .51 )  and (4 .5.52)  are just the 
A 

maximum likelihood filter equations, except that k is used in 

place of the unknown k. The state estimate and its "computed" 

covariance matrix ar.e propagated between measurements using 

the relationships 
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(4.5.56) 

A 

It should be noted that unless k = k, the "computed" covariance 

matrix P does not accurately represent tne covariance of 

the estimation error. Smith attempts to show that the estima- 

* 
nln 

tor for k as given by (4.5.54) is an unbiased estimator but 

makes several unrecognized approximations in evaluating the 

expected value of k'. He first says that the expected value 

of the second term in (4.5.54) is given by 

(4.5.58) 

However, the expected value of a nonlinear function of the 

random variables k ,  Pnln-l, zn, and Xnln-1 is - not equal to 

the function evaluated at the expected values of these 

* "* A 

respective variables. 

He then states that 

* 
However, this is true only if on every trial Pnln-l is equal 

to the actual covariance of the state estimation error. This 

generally will be true only if k = k at every estimation stage. 
A 

The third approximation involved is in the computation 
7k 

of ~(Pnln-1 ) .  He obtains this quantity recursively using 
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. the following equations. 
. I  

A * 
1 E (An) = E (Pnl n-l) hn/ (hn E (Pnl n-l)hn + E (k) Rnom 

* * T where 
n 

Here as before, Smith fails to realize that the expected 

value of a nonlinear function of a random variable is not 

equal to the function evaluated at the expected value of the 

random variable. 

In testing the above theoretical results, Smith only 

simulates the equations for the mean of the estimate of k 

and the mean computed covariance matrix. This is unfortunate 

since many approximations were made in their derivation, 

namely the rather dubious use of the expectation operators 

above. So his results are somewhat open to question since 

he did not simulate the actual performance of the estimator 

of the state and the parameter k in a realistic situation. 
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Chapter 5 

TESTING OF STATISTICAL HYPOTHESES 

5.1 Introduction 

In Chapters 3 

and noise variance 

sary equations for 

and 4 techniques for estimating the state 

parameters were discussed, and the neces- 

the solution of the problem derived. As 

was seen, even in the simplest case, considerably more C6mpU- 

tation was needed for estimating the noise variance parameters 

as compared with estimation of the state alone. In those 

applications when estimation of the state is of primary 

importance, estimation of the noise parameters should not be 

undertaken unless there is reason to believe that the a priori 

estimates of these parameters are sufficiently in error to 

seriously affect the state estimation. The purpose of this 

chapter is to develop expressions and criteria which allow a 

decision to be made as to whether observed data are consistent 

with the assumptions about the values of the noise variance 

parameters. If it is concluded that the data are not consis- 

tent, then estimation of the parameters using the techniques 

of the previous chapters should be undertaken. 

Testing of statistical hypotheses is an important part 

of statistical analysis but is perhaps one of the least 

understood an'd applied techniques in optimal estimation theory. 

Historically this is So because of a lack of a consistent 

theory which is generally applicable to a wide class of 
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problems. But even today, long after the tools of hypothesis 

testing have been developed, often little use is made of 

such tools. This can result in major difficulties in applying 

optimal estimation theory to operational situations. 

A statistical hypothesis is usually a statement about 

one or more population distributions, and specifically about 

one or more parameters of such population distributions. It 

is always a statement about the population, not about a 

finite sample taken from the population. 

There are two types of hypotheses which are of interest, 

namely simple and composite hypotheses. Hypotheses that 

completely specify a population distribution are known as 

simple hypotheses. An example of such a hypothesis is: the 

population is normal with mean mo and standard deviation oo, 

where mo and oo are specified values. 

is not determined completely by the hypothesis, the hypothesis 

is known as composite. An example of such a hypothesis is: 

the population is normal with mean mo. 

lation distribution is not specified, since no requirement 

was put on o ,  the population standard deviation. 

When the population 

Here the exact popu- 

Hypotheses may also be classified by whether they specify 

exact parameter values, or merely a range or interval of such 

values. For example, the hypothesis m = m is an exact 

hypothesis, although m - > mo is not exact. 
0 

Whatever procedure may be used for testing a hypothesis, 

that is, deciding on the basis of observed data whether to 

accept or reject the hypothesis, there are two possible errors 
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involved: 1) rejecting the hypothesis when it is true, and 

2) not rejecting the hypothesis when it is false. For any 

given situation, there may exist a family of different tests 

of the same hypothesis all of which give the same probability 

of rejecting the hypothesis when it is true but result in 

different probabilities of accepting the hypothesis when it 

is in fact false. It seems reasonable that the "best" test 

is the one which minimizes the probability of accepting a 

false hypothesis for a given probability of rejecting the 

true hypothesis. 

All tests involve finding a test variable, or sample 

characteristic, which is a function of the observed data. 

One of the first problems to be faced in making a decision 

from the data is that of choosing the relevant and appro- 

priate sample characteristic for the particular purpose. 

Different combinations of the sample data give different 

kinds and amounts of information about the population. 

Reaching a conclusion about some population characteristic 

requires effective use of the right information in the 

sample, and various sample characteristics differ in their 

relevance to different questions about the population. 

Once the sample characteristic has been selected, a 

"critical region" of the test is defined such that if the 

characteristic lies within the critical region the hypo- 

thesis is accepted, and if it lies outside the critical 

region, the hypothesis is rejected. 

Let S be the sample space of outcomes of an experiment 

187 



and x denote an arbitrary element of S. 

thesis being tested (called the null hypothesis), and let w 

denote the critical region. The probability of the first 

kind of error, rejecting H when it is true, is denoted by 

Let Ho be the hypo- 

0 

P ( X  in (s-w) { H = a (5.1.1) 
0 

where a is called the level of significance of the test. 

The probability of the second kind of error, accepting a 

false hypothesis, is denoted by 

where H is a particular alternative hypothesis in the class 

of all possible alternative hypotheses. The function 

defined over a l l  possible H is called the power function and 

for a particular value of H ,  is called the power of the test 

of H. The problem of statistical hypothesis testing is that 

of determining a critical region such that for a given level 

of significance, the power of the test is as large as possible. 

The next sections of this chapter are devoted to discus- 

sion of certain sample characteristics and distributions 

upon which subsequent hypothesis tests are based. 
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5.2 __  Sampling Characteristics and - Distributions 

Let x be a random variable with probability density 

function f(x) and consider n independent repetitions of a >I 

random experiment to which x is attached. Performing the 

series of n repetitions, n observed values of x are obtained, 

denoted xl,.. ,xn. 

tion of the sample values, say g(xl,..,x ) and accordingly 

the probability distribution of this latter variable will be 

called the sampling distribution of the characteristic 

Any sample characteristic will be a func- 

n 

g(xl, - ,xn) 
The sample mean is defined by 

n 
F 4 1 . C  n xi 

i=l 

and the sample variance 

- 2  s - -  (Xi - x) n 
i=l 

(5 .2 .1 )  

(5 .2 .2 )  

Let the population characterictics of the random variable 

x be 

&(xi) = m 

Then the expected value of the sample characteristic x 
is equal to the population characteristic, m. Moreover, the 

variance of will be small for large values of n. Thus for 
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a sufficiently large value of n, the sample mean x will be 
approximately equal to its expected value m. If m is unknown, 

can be used as an estimate of m. 

Consider the variance of the sample. 

i=l 

2 n-1 2 
& ( S  ) = - u n 

Thus the expected value of the sampling characteristic s2 is 

not equal to the population characteristic u2 but is equal to 

((n-l)/n)u . This difference is insignificant for large n; 

but for moderate n, it will be preferable to consider the 

2 

corrected sample variance 

n 
1 2 

n-1 n- 1 
i=l 

2 which has an expected value exactly equal to u e 

The variance of s2 is given by the expression 

where 1-1 and p are the second and fourth central moments of 

the distribution function of x. (Ref. 3, P. 183) 
2 4 

2 For large n, the variance of s2 will be small and s 

can be expected to agree approximately with the population 

variance since, as already pointed out, the expected value 
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of s2 i s  p r a c t i c a l l y  e q u a l  t o  o2 when n i s  l a r g e .  

Thus f a r ,  t h e  sample mean and v a r i a n c e  and t h e i r  f i r s t  

t w o  moments w e r e  s t u d i e d  wi thou t  r e f e r e n c e  t o  t h e  d e n s i t y  

f u n c t i o n  of t h e  random v a r i a b l e  involved .  I n  o r d e r  t o  o b t a i n  

more p r e c i s e  r e s u l t s  about  t h e  p r o p e r t i e s  of sampling d i s t r i -  

b u t i o n s ,  it w i l l  be  necessa ry  t o  i n t r o d u c e  f u r t h e r  assumptions 

abou t  f ( x ) .  The case of  i n t e r e s t  i s  when f ( x )  i s  a normal 

d e n s i t y  f u n c t i o n .  

If x i s  an  o b s e r v a t i o n  from a normal d i s t r i b u t i o n  w i t h  

p o p u l a t i o n  mean m and v a r i a n c e  a2, t h e  p r o b a b i l i t y  d e n s i t y  

f u n c t i o n  of x i s  

-; [y) 2 

f (x) = - ' e  
J 5 U  

( 5 . 2 . 4 )  

I t  has  been assumed t h a t  t h e  n o b s e r v a t i o n s  xi are indepen- 

d e n t ,  so 

n 

f ( x l , . . , x n )  = 7T f ( X i )  

i= 1 

I t  can be shown t h a t  i f  t h e  n o b s e r v a t i o n s  xi are inde-  

pendent  normal random v a r i a b l e s  w i t h  p o p u l a t i o n  mean m and 

v a r i a n c e  02, t h e n  

2 1) i s  a normal v a r i a b l e  wi th  mean m and v a r i a n c e  a /n.  

2 
i s  a c e n t r a l  c h i  s q u a r e  d i s t r i b u t e d  random n s  

2 

v a r i a b l e  w i t h  n-1 d e g r e e s  of  freedom. 

2 )  - 
o 

3 )  x and s 2  are independent ly  d i s t r i b u t e d .  
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is a Students' distributed random x - m  4)t=Ai=i 

variable with n-1 degrees of freedom. 

5.3 Confidence Intervals 

An understanding of confidence intervals is necessary 

before testing of simple hypotheses can be undertaken. When 

estimating the value of a parameter by observations on a 

random variable, it is usually desirable to obtain not only 

the estimated parameter value but also a measure of the 

precision of such an estimate. To obtain such a measure of 

an estimate 5 of an unknown parameter 5 ,  two positive numbers 
h 

6 and amight be found such that the probability that the true 

value of 5 is included between the limits 5 k 6 is equal to 
A 

1 - a. Or 

(5.3.1) 

For a given probability 1 - a ,  high precision of the estimate 

would be associated with small values of 6. More generally, 

to an unknown parameter 5 ,  two functions of the sample values 

5, and 5, are found such that the probability that the inter- 

val (El, 5,) includes the true value 5 has a given value 

1 - a, or 

* * 

* * 

(5.3.2) 

Such an interval is called the confidence interval for the 

192 



parameter  a n d l t h e  p r o b a b i l i t y  1 - a i s  denoted as t h e  c o n f i -  

dence c o e f f i c i e n t  of t h e  i n t e r v a l .  

5.4 T e s t s  on t h e  Mean 

Two s i t u a t i o n s  w i l l  be  t r e a t e d  h e r e  concern ing  conf idence  

i n t e r v a l s  and tests on t h e  mean, one i n  which CI i s  presumed 

known, t h e  o t h e r  when CI i s  n o t  known. The case when CI i s  

known i s  cons ide red  f i r s t .  

L e t  t h e  v a r i a b l e  x be  normally d i s t r i b u t e d  w i t h  mean m 

and v a r i a n c e  a 2 ,  where m i s  unknown and CI i s  known p r e c i s e l v .  

Given n independent  observed v a l u e s  x l , . . , xn ,  a conf idence  

i n t e r v a l  f o r  t h e  mean i s  sought .  

I n  S e c t i o n  5.2 it was s t a t e d  t h a t  t h e  v a r i a b l e  

n 
- a -  - x = ' L  n xi 

i=l 

2 has  a normal d i s t r i b u t i o n  wi th  mean m and v a r i a n c e  CI /n. 

Theref o r e  

A fi (x - m )  t =  
CI 

(5 .4 .1)  

i s  a z e r o  mean u n i t  v a r i a n c e  normally d i s t r i b u t e d  v a r i a b l e .  

L e t  a denote  a g iven  f r a c t i o n  and t be t h e  a p e r c e n t  a 

v a l u e  of t found d i r e c t l y  from a t a b l e  of t h e  normal d i s t r i -  

b u t i o n .  By t h e  d e f i n i t i o n  of ta, 

= 1  - a  (5 .4 .2)  
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By a simple transformation, (5.4.2) can be written as 

(5.4.3) is a relation of the tvpe suggested by (5.3.2). 

Accordingly, the interval 

(5.4.3) 

(5.4.4) 

is a 1 - a confidence interval for m, the limits of the inter- 

val are confidence limits for m, and the corresponding 

confidence coefficient is 1 - a .  

Thus the confidence interval (5.4.4) provides a rule 

for estimating the parameter m, which is associated with a 

constant risk of error equal to a ,  where a can be chosen 

arbitrarily. 

Testing the hypothesis that m has some given value, say 

m is related to the confidence interval deduced above. In 

this case a decision is made concerning which of the following 

hypotheses is true, based upon the observed data: 

0' 

2 1) K : x is normal with mean m = m and variance 0 
0 0 

(known) 

2 2) H1: x is normal with mean m # m and variance 0 
0 

(known) 

Working ona given level a ,  the confidence limits of m are 

computed accordi2CJ to (5.4.4). If the given Value mo falls 
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outside the confidence interval, it is said that m differs 

significantly from m on the c1 level and accordingly Ho is 

rejected and H1 is accepted. 

includes the point mo, it is said that no significant differ- 

ence has been found and the hypothesis Ho is accepted. 

0 

If the confidence interval 

In the case when €-Io is in fact true, this test gives 

a probability 1 - a of accepting the hypothesis and conse- 
quently the probability a of rejecting it. Thus the proba- 

bility of committing an error by rejecting the hypothesis 

when it is true is equal to the level of the test a. 

In order to apply this test, the sample characteristic 
- 
x is found, and the quantity t computed, where 

Ai (X - mo) 
t =  

CJ 
(5 .4 .5 )  

Denoting by a the desired level of the test, the value ta 

is found from a normal distribution table. 

hypothesis Ho is rejected on the level a. 

If It1 > ta, the 

In the case when Ho is not true, but rather H1 is true, 

the probability of accepting the incorrect hypothesis based 

upon the 

does not 

when m # 

above test is not 1 - a. This is because (5 .4 .5 )  

have a zero mean unit variance normal distribution 

m However, the variable 
0 .  

fi (X - m) t' = 
CJ (5.4.6) 

does have such a distribution. Define 
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Then 

hi (m - mo) 
A =  

0 

t = t ' + A  

.- . 

( 5 . 4 . 7 )  

The probability that the test variable t lies within 

the range It1 < t, is 

P(-t, < t < t ) = P ( - t ,  - A<t' < t, -A) a 

Def ine 

Then 

B = P(-t, < t < t,) = probability of accepting H 0 

when E 1 is true 

t -A 

B =/ f(u) du 
-t -A 

where f ( u )  is the normal probabilitv density function with 
' >  

zero mean and unit variance. Since f(u) is symmetrical 

about u = 0, 

B 

Define 

t,+A 
du I f (u) du 

+ A  

B2 - - p2 f (u) du 
-t 

B2 
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1 Then B = $6, + B 2 )  

y = l - B = l - - ( B  1 + @ , I  
and 2 1  

For 

A > t 

n e g a t i v e .  I t  can be seen  t h a t  

-ta < A < ta, bo th  B, and B, w i l l  be p o s i t i v e ,  wh i l e  i f  

a' a' B1 w i l l  b e ' n e g a t i v e ,  and i f  A < -t f3, w i l l  be 

8, = fl P ( [ t l  < ItB, I )  where t h e  + s i g n  i s  
.L 

used when t i s  p o s i t i v e  
81 

B, = fl P ( l t l  < 1 )  w i t h  t h e  s a m e  s i g n  

convent ion  

Thus t h e  power of t h e  t e s t ,  y ,  i s  a f u n c t i o n  of m ,  m 
0' 

a ,  0 ,  and n. However, i f  y i s  p l o t t e d  as a f u n c t i o n  of t h e  

nondimensional parameter  A ,  t h e  only  f ree  v a r i a b l e  i s  a ,  t h e  

l e v e l  of t h e  t es t .  Such a p l o t  i s  shown i n  F i g u r e  5.1 f o r  

a = .05,  .lo, and . 20 .  

Note t h a t  

f (u) du 

-t a 
f3 =fa f ( u )  du + /  f (u) du + 

- t a - A  

and 1 - a =  f a  f ( u )  du 

a ' -t 
-t a 

so B = l - a + j  f ( u )  du + 
-t - A  a 
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I t  can be shown t h a t  f o r  any A # 0 ,  

so B < l - a  f o r  A # 0 

= 1 - a  f o r  A = 0 

I n  o t h e r  words,  t h e  p r o b a b i l i t y  of a c c e p t i n g  a f a l s e  hypothe- 

s is  H i s  less  t h a n  t h e  p r o b a b i l i t y  of a c c e p t i n g  a t r u e  

hypo thes i s  Ho.  

B = 1 - a f o r  A = 0 and B -+ 0 a s  [ A I  + 03. 

1 
A s  I A l  i n c r e a s e s ,  6 d e c r e a s e s  wi th  t h e  l i m i t s  

S ince  6 w i l l  o r d i n a r i l y  be s m a l l  f o r  l a r g e  a ,  it  fo l lows  

t h a t  s e t t i n g a l a r g e r  w i l l  make f o r  r e l a t i v e l y  more powerful 

tes ts  of Ho. The power curves  shown i n  F i g u r e  5 . 1  i n d i c a t e  

t h a t  i f  a i s  se t  a t  .10 r a t h e r  t h a n  .05,  t h e  t es t  wi th  

a = .10 i s  more powerful than  t h a t  f o r  a = .05  over  a l l  

1' p o s s i b l e  v a l u e s  of m under H 

e r r o r  i n  r e j e c t i n g  a t r u e  hypo thes i s  l a r g e r  has  t h e  e f f e c t  

of making t h e  t e s t  more powerful .  The p rope r  v a l u e  of a f o r  

any p a r t i c u l a r  a p p l i c a t i o n  depends upon t h e  r e l a t i v e  p e n a l t y  

p a i d  f o r  over looking  a t r u e  d e p a r t u r e  from Ho v e r s u s  r e j e c t -  

i n g  Ho f a l s e l y .  

Making t h e  p r o b a b i l i t y  of 

For a g iven  m ,  m and 0 ,  i n c r e a s i n g  t h e  sample s i z e ,  n ,  
0' 

has  t h e  e f f e c t  of i n c r e a s i n g  ] A ] ,  s o  t h a t  t h e  power of t h e  

t e s t  i s  i n c r e a s e d  wi th  i n c r e a s i n g  n .  A s i m i l a r  i n c r e a s e  i n  

t h e  t e s t  power could  be achieved by reducing  0 ;  b u t  i n  t h e  
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application under study, r~ is not a variable which is easily 

reduced, so that the only effective way to increase the test 

power is to increase a or n. 

Establishing confidence intervals in tests on the mean m 

with cr unknown is similar to the previous work, except that 

the sampling characteristic and its distribution are somewhat 

different. 

In Section 5.2,  it was stated that the variable 

/ iFF (X - m) t =  
S 

(5.4.8) 

has a Students' distribution with n-1 degrees of freedom, 

where x is the sample mean and s is the sample standard 

deviation. 

percent value of t for n-1 degrees of freedom found directly 

from a table of the Students' distribution. By the defini- 

tion of ta, 

Let a denote a given fraction and ta be the a 

In the same fashion as before, the interval 

(X - -, S x + tu - 
ta m m 

(5.4.9) 

(5.4 .lo) 

is a 1 - a confidence interval for m, the limits of the 

interval are confidence limits for m, and the corresponding 

confidence coefficient is 1 - a. 
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Testing the hvpothesis that m has some given value, 

for a unknown is quite similar to the test for (5 
0' 

say m 

known. A decision is made concerning which of the following 

hypotheses is true based upon the observed data: 

1) Eo: 

2)  H1: 

x is normal with mean m = mo 

x is normal with mean m # mo 

In order to apply this test, the sample characteristics 
- 
x and s 2  are found and the quantity t computed, where 

Denoting by a the desired level of the test, the value ta 

is found from a Students' distribution table. 

the hypothesis Ho is rejected on the level a. 

If [ti > tar 

Define 

t' = A (x - m) 
S 

(5.4.12) 

and 

Then 

4 i F i  (m - mo) A A =  
S 

t = t ' + A  

(5.4.13) 

If Ho is false (H1 is true), t defined by (5.4.11) does 

not have a Students' distribution, but t' does have such a 

distribution. So 
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Def ine B = P(-ta < t < ta) = probability of accepting H 
0 

when H is true 1 

1 
B = 2(B1 + 6,) Then 

where B, and B 2  are as defined before except f(u) appearing 

there is now the Students' distribution with n-1 degrees of 

freedom. 

As before, it is possible to construct a power curve 

versus A for a given a .  NOW, however, the curve is also a 

function of n, the number of sample values. 

As in the case with 0 known, B < 1 - a for any IAl > 0, 

so that the probabilitv of accepting a false hypothesis is 

less than the'probability, df accepting a true hypothesis, 

with B -+ 0 as IAl -f co. Increasinq a results in a more 

powerful test of Ho but also increases the risk of rejecting 

a true hypothesis. 

Figure 5.2 shows the power of the above test versus 

the nondimensional parameter A for a = .05 and .lo, with 

n = 10. Figure 5.3 shows the power versus A for n = 5, 10, 20, 

with a = .lo. 

In this section, the normal distribution and the Students' 

statistic have been used for drawing inferences on the unknown 

mean of a population from which observations are obtained. 

The distribution of the t-statistic defined by (5.4.11) is 

obtained after making the following assumptions: 

1) the distribution of the random variable x is normal 
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-5 - 4  -3  -2 -1 0 1 2 3 4 5 
A 

Fig .  5 . 1  T e s t  Power v s  A and a 

L-- 
-5  - 4  - 3  - 2  -1 0 1 2 3 4 

A 

Fig .  5 .2  T e s t  Power vs  A and a for Fixed n 

2 0 2  



1. 

t .  
Y. 

- 5  - 4  - 3  - 2  -1 0 1 2 3 4 5 
A 

Figure 5 . 3  Test Power vs A and n f o r  Fixed c1 

203 



2) the observations are mutually independent 

3 )  the mean of the population is exactly m 
0 

From the theoretical and empirical studies it is known 

that the t distribution is not sensitive to moderate depar- 

tures from normality so that its application is not strictly 

governed by the normality assumptions. A significant t may 

not, therefore, be interpreted as indicating departure from 

the normality of the observations. 

Suppose that all the observations are mutually corre- 

lated with a common positive correlation p for any two. Then 

2 
( 5 . 4 . 1 4 )  2 0 E [ ( X  - mo) 1 = (1 + (n-llp) 

P )  (5.4.15) 

Instead of the t-statistic (5.4.11) consider 

2 (n-1) (X - mo) 
t2 = (5.4.16) 2 

S 

which can be shown to have a F distribution on 1 and n-1 

degrees of freedom. From (5.4.14) and (5.4.15), the 

expected values of the numerator and denominator of t are 2 

n-1 2 n-1 2 
0 (1 - (n-1)p) and - 0 (1 - P )  - n n ( 5 . 4 . 1 7 )  

The ratio of the expectations is unity when p = 0, but is 

greater than unity when p > 0 and -t 03 as p + 1. Thus a 
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large v a l u e  of t i s  expec ted  t o  occur  when p i s  p o s i t i v e l y  

l a r g e ,  even when m i s  e x a c t l y  equa l  t o  m.  A s i g n i f i c a n t  t 

may t h e r e f o r e  be due t o  a d e p a r t u r e  i n  assumption 2 ) .  

0 

F i n a l l y ,  when t h e  assumptions 1) and 2 )  are t r u e  and 

m # mo, t h e  r a t i o  of t h e  expec ted  v a l u e s  of t h e  numerator 

and denominator of t2 of ( 5 . 4 . 1 6 )  i s  

2 n(m - 
+ 1 2 

0 
(5.4.18) 

compared w i t h  1 when m = m so t h a t  l a r g e  v a l u e s  of t occur  

when assumption 3 )  i s  wrong. Th i s  i s  e x a c t l y  t h e  r eason  why 

t h e  t - tes t  i s  used t o  test t h e  n u l l  hypo thes i s  concern ing  t h e  

mean of a d i s t r i b u t i o n .  

0' 

I n  computing ( 5 . 4 . 1 7 )  t h e  extreme case of mutual depen- 

dence wi th  a common c o r r e l a t i o n  p w a s  cons ide red .  But i n  

g e n e r a l ,  any dependence g i v i n g  p o s i t i v e  c o r r e l a t i o n  t o  p a i r s  

of  v a r i a b l e s  w i l l  i n c r e a s e  t h e  s i g n i f i c a n c e  of t, s o  t h a t  t h e  

t e s t  w i l l  i n d i c a t e  any s i g n i f i c a n t  d e p a r t u r e  from assumption 2 ) .  

5 , 5  T e s t s  on t h e  Var iance  

L e t  t h e  v a r i a b l e  x be normal w i t h  mean m and v a r i a n c e  

0 2 ,  w h e r e  m and 0 a r e  bo th  unknown. Given n independent  

observed v a l u e s  x l , . . , x  

v a r i a n c e  o2 i s  sought .  

a conf idence  i n t e r v a l  f o r  t h e  

I n  S e c t i o n  5.2 it w a s  s t a t e d  t h a t  
n '  

t h e  v a r i a b l e  
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has a chi square distribution with n-1 degrees of freedom. 

For any given level of test a ,  infinitely many intervals can 

be found, each of which contains exactly the area 1 - a in 

this distribtuion. Among all these intervals, the particular 

) is chosen, where xi and x 2  are the a1 2 

2 
interval (x a 

2 1 
and a2 values of the x 2  distribution for n-1 degrees of free- 
dom, where 

1 1 a 1 = 1 - p  a 2 = p  

contain equal area 2 2 2 
< xa l  and x Each of the tails x > x a 2  

7 3, and thus 

2 ) = l - a  2 nsL 
l a  

P ( x a  < - 
2 < x, 2 

By a simple transformation, (5.5.1) can be written as 

Thus the interval 

2 ns f ) 
xal 

(5.5.1) 

(5.5.2) 

(5.5.3) 

is a 1 - a confidence interval for a2,  the limits of the 

interval are the confidence limits for a2, and the corres- 

ponding coeidence coefficient is 1 - a .  The confidence 

interval (5.5.3) Rrovides a rule for estimating the parameter 

a2, which is associated with a constant risk of error equal to a .  
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T e s t i n g  t h e  hypo thes i s  t h a t  a 2  has  s o m e  g iven  v a l u e ,  

2 say  ao, i s  analogous t o  t h e  tests of t h e  mean g iven  i n  t h e  

p rev ious  s e c t i o n .  

i n g  which of t h e  fo l lowing  hypotheses  i s  t r u e :  

I n  t h i s  case a d e c i s i o n  i s  made concern- 

2 
1) Ho: x i s  normal wi th  v a r i a n c e  a 2  - - OO 

2 2 
2 )  H1: x i s  normal w i t h  v a r i a n c e  a # a. 

I n  o r d e r  t o  apply  t h e  t es t ,  t h e  sample c h a r a c t e r i s t i c  

s2 must be  found and t h e  q u a n t i t y  x 2  computed, where 

2 2 - 3 1 s  x - -  
rr 2 (5 .5 .4 )  
U 

0 

Denoting by a t h e  d e s i r e d  l e v e l  of t h e  t e s t ,  t h e  v a l u e s  

and x: a r e  found from a c h i  squa re  d i s t r i b u t i o n  t a b l e  
xal 2 2 2 2 
w i t h  n-1 deg rees  of freedom. If xa < x < xa2, t h e  

1 ~ 

hypo thes i s  Eo i s  accep ted  on t h e  l e v e l  , o the rwise  Ho i s  

rejected and H accep ted .  I n  t h e  c a s e  when Ho i s  i n  f a c t  

t r u e ,  t h i s  t e s t  g i v e s  a p r o b a b i l i t y  of 1 - a of accep t ing  

t h e  hypo thes i s  and consequent ly  a p r o b a b i l i t y  a of r e j e c t i n g .  

Thus t h e  p r o b a b i l i t y  of r e j e c t i n g  Ho when it i s  t r u e  i s  equa l  

t o  t h e  l e v e l  of t h e  t e s t ,  a. 

1 

I n  t h e  c a s e  when H i s  n o t  t r u e  ( t h u s  H1 i s  t r u e ) ,  t h e  
0 

p r o b a b i l i t y  of a c c e p t i n g  t h e  i n c o r r e c t  Ho i s  n o t  1 - a. 
This  i s  because ( 5 . 5 . 4 )  does n o t  have a c h i  squa re  d i s t r i b u -  

t i o n  when a # ao. However, t h e  v a r i a b l e  
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does have a c h i  squa re  d i s t r i b u t i o n  w i t h  n-1 deg rees  of 

freedom. Def i n e  

Then 

2 
q = -  A ‘0 

2 
U 

2 
X I 2  = rlx 

(5.5.7) 

and t h e  p r o b a b i l i t y  t h a t  t h e  t es t  v a r i a b l e  l i es  w i t h i n  t h e  

2 2 Define (3 = P ( x  < X < x: ) = p r o b a b i l i t y  of a c c e p t i n g  H 
0 al 2 

when H i s  t r u e  1 

Then 
J 2  

nxcl 1 

where f ( u )  i s  t h e  c h i  squa re  d i s t r i b u t i o n  w i t h  n-1 deg rees  

of freedom. I t  should be noted  t h a t  u n l e s s  n = 1, t h e  area 

2 and u > nx, 
1 2 

under t h e  t a i l s  of f (u )  f o r  u < n x 2  a r e  n o t  
c1 

equal .  Define 
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Then B = B 2  - B1 

and y = l - B  

I t  i s  a g a i n  p o s s i b l e  t o  c o n s t r u c t  a power curve  v e r s u s  r l  f o r  

a g iven  a ,  t h e  cu rve  a l s o  be ing  a f u n c t i o n  of n ,  t h e  number 

of sample v a l u e s .  Such cu rves  are shown i n  F i g u r e s  5 . 4  and 

5 .5 .  

5.6 Multidi-mensional ~ ._ _ _  Hypothesis  _ _  _ _  ~~ T e s t s  __ w i t h  T i m e  Varying 

Popu la t ion  - . -. Parameters 

I n  t h e  preceding  s e c t i o n s ,  hypothes is  t es t s  on t h e  t i m e  

i n v a r i a n t  parameters  of t h e  d i s t r i b u t i o n  of a s c a l a r  random 

v a r i a b l e  w e r e  d i s c u s s e d .  The r e s u l t s  can be g e n e r a l i z e d  t o  

i n c l u d e  tes ts  on v e c t o r  random v a r i a b l e s  w i t h  t i m e  va ry ing  

parameters .  F i r s t  t h e  case of v e c t o r  random var iab les  wi th  

c o n s t a n t  popu la t ion  parameters  w i l l  be  d i s c u s s e d .  

L e t  X be a r x 1 random v a r i a b l e  wi th  d e n s i t y  f u n c t i o n  

f ( X )  and c o n s i d e r  n independent  r e p e t i t i o n s  of a random 

experiment  t o  which X i s  a t t a c h e d .  The r e s u l t i n g  observed 

v a l u e s  of X are denoted X1,..,Xn. 

d e f i n e d  by 

The sample mean i s  

n 
1 
n 

- x = - F  xi 

i=l 

and t h e  sample cova r i ance  i s  de f ined  by 

- 
s2 = 1 n f (Xi - X ) ( X i  - m T  

( 5 . 6 . 1 )  

(5 .6 .2)  
i=l 

2 0 9  
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F i g .  5 .5  T e s t  Power  vs  17 and n for Fixed c1 
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L e t  t h e  popu la t ion  c h a r a c t e r i s t i c s  of t h e  random v a r i a b l e  

X be  

€ ( X i )  = M f o r  i = 1, ..., n 

E [ (Xi - M )  (Xi - M)T] = P 

Then t h e  sample mean i s  a random v a r i a b l e  w i t h  

and t h e  sample cova r i ance  i s  a random v a r i a b l e  w i t h  

2 n-1 
E ( S  ) = - P  n 

A s  i n  t h e  preceding  s e c t i o n s ,  it w i l l  be  necessa ry  t o  

i n t r o d u c e  f u r t h e r  assumptions about  f ( X )  i n  o r d e r  t o  o b t a i n  

more p r e c i s e  r e s u l t s  about  t h e  p r o p e r t i e s  of t h e  sampling 

d i s t r i b u t i o n s .  The case of i n t e r e s t  i s  when f ( X )  i s  a 

mul t id imens iona l  normal d i s t r i b u t i o n .  

--[(X-M) 1 T P -1 ( X - M ) ]  2 e 1 
1 / 2  f (x )  = 

(2lT)r’2lPl 

I t  i s  a l so  assumed t h a t  t h e  n o b s e r v a t i o n s  Xi a re . indepen-  

d e n t ,  so  

2 1 1  



I I I1 I1 m111111 Ill Ill II I Ill I Ill I Ill I 

n 

I t  can  be  shown t h a t  if t h e  n o b s e r v a t i o n s  Xi are independent  

normal v a r i a b l e s  wi th  popu la t ion  mean M and cova r i ance  P ,  then  

1) i s  a r x 1 dimens iona l  normal v a r i a b l e  w i t h  mean 

M and cova r i ance  P/n. 

2 )  f o r  any f i x e d  v e c t o r  L, n i s  a c e n t r a l  c h i  
LTP L 

- 
squa re  d i s t r i b u t e d  random v a r i a b l e  w i t h  n-1 deg rees  

of freedom. 

3) and S 2  are independent ly  d i s t r i b u t e d .  

T -  
(' - - ~~ f o r  any f i x e d  L ,  i s  a S t u d e n t s '  4) t = 

C V T  
d i s t r i b u t e d  random v a r i a b l e  w i t h  n-1 deg rees  of 

freedom. 

Comparing t h e s e  f o u r  r e s u l t s  w i th  t h o s e  of S e c t i o n  5 . 2 ,  

t e s t s  of hypotheses  and conf idence  i n t e r v a l s  on a v e c t o r  

random v a r i a b l e  can be handled i n  t h e  same f a s h i o n  a s  a 

s c a l a r  random v a r i a b l e .  I f  t h e  mean and v a r i a n c e  of each 

component of t h e  random v a r i a b l e  X are  t o  be tes ted,  t h e  

proper  cho ice  of L f o r  each tes t  i s  

f compon-nt n o t  ze ro  
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Instead of a single confidence interval and test of the mean 

and variance, there will now be r such intervals and r test$ 

on the mean and variance. The power of such tests under 

deviations from the null hypothesis can be computed in a 

manner entirely analogous to that of the previous sections. 

The sample mean and covariance are not the only sample 

characteristics which can be used to test hypotheses on the 

distribution of X. Below are discussed alternative sample 

characteristics which might be used and in many applications 

they will provide sufficiently powerful tests. 

Consider the random variable 

A = C(Xi - M) 'i 

where c -  a &-l 

and C-l exists. T -1 such that C C = P  

Such a C can always be found because P is positive definite. 

Then 

E(Yi) = 0 

T 
1 1  

E(Y.Y.) = I the identity matrix 

The elements of Yi are independent, zero mean unit variance 

normally distributed variables, and 
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r 
A 1  t h  where Y j  i s  t h e  j i 

element  of t h e  v e c t o r  Yi j=1 

1 
r i i s  a ze ro  mean normal v a r i a b l e  wi th  v a r i a n c e  -. Since  Y 

i s  independent  of Yk f o r  i # k ,  U .  i s  independent  of Uk f o r  

i # k ,  and 
1 

n 
- A 1  .=-E ui 

n 
i=l 

1 i s  a zero mean normal v a r i a b l e  w i t h  v a r i a n c e  - n r '  
Define 

wi 4 Y T Y i  (5.6.3) 

Since  t h e  Y i  a r e  zero  mean u n i t  v a r i a n c e  normal v a r i a b l e s ,  

W .  i s  a c e n t r a l  c h i  squa re  v a r i a b l e  w i t h  r degrees  of freedom, 

w i t h  Wi independent  of Wk f o r  i # k.  

1 

Then 

n 
z q  wi 

i=l 
(5.6.4) 

i s  a c e n t r a l  c h i  square  v a r i a b l e  w i t h  n r degrees  of freedom. 

Now c o n s i d e r  t h e  v a r i a b l e  

- - 
Yi = C ( X i  - X )  = Y + C(M - X )  i 
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and d e f i n e  

wi = Y i T  Y i  

= YiYi T + (Y-M)TP-l(F-M) - 2 YTC(F-M)  

n - 
Y = 1 n Yi = C ( F  - M )  

i=l 

wi = YiYi T + YTY - 2 Y T Y  Then (5 .6 .5 )  

n 
(5 .6 .6 )  T -T- Define z '  = 1 wi = (YiYi - Y Y )  

i=l i=l 

I t  can be shown t h a t  Z '  i s  a c e n t r a l  c h i  squa re  v a r i a b l e  w i t h  

( n - l ) r  deg rees  of freedom, and t h a t  Z' i s  independent  of is. 
Since  n r E i s  a ze ro  mean u n i t  v a r i a n c e  normal v a r i a b l e  

and Z '  i s  a c e n t r a l  c h i  squa re  v a r i a b l e  wi th  ( n - l ) r  deg rees  

of freedom, and i s  independent  of Z ' ,  t h e  v a r i a b l e  

i s  a S t u d e n t s '  d i s t r i b u t e d  random v a r i a b l e  w i t h  ( n - l l r  

deg rees  of freedom. Define 

n 

Then 

T -T- Z '  = - (YiYi - Y Y )  s2  L - 1 
n r  n r  

J 7 i F i - E  E t =  
S 

(5 .6 .7 )  

(5 .6 .8 )  

A f t e r  some man ipu la t ion ,  it can be shown t h a t  
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n 
T -1 - 1 

n r  s 2  = - c (Xi - F) P (Xi - X) (5.6.9) 
i=l 

By use of the sampling characteristics (5.6.8) and (5.6.9)' 

the null hypothesis that M = M 

The proper test variables for this test are 

and P = Po can be tested. 
0 

and 

where 

/- E 
S 

t =  

n 

i=l 
r 

j=1 

(5.6.10) 

(5.6.11) 

Under the null hypothesis, it has been shown that t has a 

Students' distribution and nr s 2  has a chi square distribu- 

tion. It should be noted that unlike the tests of hypotheses 

about the distribution parameters of scalar normal variables, 

a mean test using (5.6.10) does depend upon the hypothesized 

value of the covariance P . Unless M = M and P = P t does 

not have a Students' distribution, and a significant t could 
0 0 -  0' 

arise from a departure from the hypothesis M = M 0 or P = P 0 

or both. However, it can be shown that t is not highly 

sensitive to departures from the hypothesis P = Po,  so that 

a significant t can be used to reject the hypothesis M = Mo 

alone, especially if the covariance test either accepts or 

does not strongly reject the hypothesis P = Po. While the 
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mean test depends somewhat upon the covariance hypothesis, 

it can be seen that the covariance test does not depend upon 

the mean hypothesis. The covariance test variable (5.6.11) 

has a chi square distribution if P = Po, regardless of 

whether M = Mo. 

The mean and covariance test variables (5.6.10) and 

(5.6.11) can be used to test the hypotheses outlined above 

in a fashion similar to that of Sections 5.4 and 5.5, as 

long as caution is employed in interpreting the results of 

such tests. 

Now consider the case of vector random variables with 

time varying population parameters. The case of interest is 

when the population mean is time invariant, but the population 

covariance varies with time. Then the population character- 

istics of the random variable X are 

€(Xi) = M 

T 
E [  (Xi - M) (Xi - M) 3 = Pi 

The sample mean is a random variable with 

E(F) = M 

n 
where - A 1  .=-E Pi 

n 
i=l 
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and the sample covariance is a random variable with 

n-1 - P 2 
E ( S  ) = - n 

As before it will be assumed that the Xi are independent 

normal variables with the population parameters given above. 

Because of the time varying population parameters, it 

will be necessary to utilize normalized variables in order 

to obtain the sampling distribution of certain sampling 

characteristics. Consider the variable 

where 

such that 

Then 

= Ci(Xi - M) 'i 

ci -e- - 

T -1 -1 
CiCi = Pi and Ci . exists. 

i &(Y ) = 0 

(5 .6 .12)  

E(YiYi) T = I 

The elements of Yi are independent zero mean unit variance 

normal variables, with Yi independent of Y 

Define 

for i # j .  
j 

n 

i=l 
n - - T  

S I 2  = L 1 (Yi - Y) (Yi - Y) n 
i=l 
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After some manipulation, it can be shown that 

n 
S I 2  = 11 n [(CiXi-=) + M(c-Ci)l[(CiXi-cx) + M(F-C.)IT 1 (5.6.13) 

i=l 
n 

where - A  1 
n c = -  1 ci 
i=l 
n 

Ls 2 cixi - cx = - n 
i=l 

It can be shown that 

1) y is a r dimensional zero mean normal variable with 

covariance I/n. 

T 
2) for any fixed L, v is a central chi square 

LIL 

distributed variable with n-1 degrees of freedom. 

3) and S I 2  are independently distributed. 

4 )  for any fixed vector L, "' is a Students' 
W L  

distributed variable with n-1 degrees of freedom. 

The hypothesis that M = Mo and Pi = Poi can be tested in a 

fashion analogous to the tests outlined in this section for 

time invariant distribution parameters, except that now the 

test variables are 

j = l , .  . ,r (5.6.14) 
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where 

LIL 
i j  

n 
(Yi-i) (Yi-Y) - T  

n 

(5.6.15) 

i=l 

n 

i=l 

It can be seen that both (5.6.14) and (5.6.15) are 

functions of the sample values Xi and the values of Mo and 

and Pio unless Pio is time invariant. Therefore tests using 

these test variables do not provide independent tests of 

the mean and covariance. However, both variables can be used 

where M and for testing the hypothesis M = Mo and Pi = Pio, 

'io 

0 

are specified values. Rejection of the hypothesis by 

either test can imply that M # Mo or P # Pio or both. i 
However, even though the tests are not independent, it can be 

shown that the mean test is more sensitive to departures from 

the mean hypothesis than from the covariance hypothesis, and 

conversely for the covariance test. 

As in the case of time invariant population parameters, 

the sample characteristic (5.6.14) and (5.6.15) are not the 

only characteristics which might be used to test hypotheses 

on the mean and covariance of X. In a manner analogous to 

the previous work, define 
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I -  
n 

where here 

1 T -T- s2 = - 1 (YiYi - Y Y )  n r  
i=l 

J - ( i i = i E  E t =  
S 

Yi = Ci(Xi - M) 

(5.6.16) 

(5.6.17) 

n 
- .='E Yi 

n 
i= 1 

r 

j=1 

II - u = q  Ui 
n 
i=l 

As before, nr s 2  has a chi square distribution with n-1 

degrees of freedom, and t has a Students' distribution with 

n-1 degrees of freedom. By use of these sampling character- 

istics, the null hypothesis M = Mo and Pi - can be tested. - 'io 
The proper test variables for this test are (5.6.16) and 

(5,6.17) with Mo replacing M and Pio replacing Pi. The two 

tests are not independent tests of the mean and covariance 

so caution should be employed in interpreting the results 

of such tests. 

5.7 Application - of Hypothesis Tests to Maximum Likelihood 

State Estimation 

In Chapter 2, the recursive maximum likelihood state 

estimation equations were derived f o r  a linear dynamical 
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system. These equations were derived under the following 

assumptions : 

1) the measurement and driving noises are independent, 

zero mean normal variables. 

2)  the covariance of the noises are known precisely. 

3) no computational errors are made. 

4) all of the parameters describing the dynamical 

system and the linear measurement are known precisely. 

If all of these assumptions are valid, it can be shown that 

the measurement residual at any time k 

A h 
U Azk = zk - H x k klk-1 

is a zero mean normal variable, independent of the residuals 

at times other than k, with conditional covariance 

m 

where Azk and Bk are computed using values of the noise 

covariance parameters assumed known by the previous assumptions. 

It can be seen that the variable Azk is just such a 

variable upon which the tests of the mean and covariance 

given previously can be applied. Which set of tests is 

applied depends upon: 
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1) computational limitations 

2) desired power of the tests 

3 )  the dimension of the residual 

4 )  whether the estimation equations have reached a 

steady state such that Bk is approximately constant, 

so that the population parameters of the residuals 

are time invariant 

5 )  the need to isolate which component of the residual 

satisfies or violates the underlying assumptions 

If the residuals fail the hypothesis tests, the tests 

themselves do not tell why, but merely indica.te that one or 

more of the assumptions is probably in error. It is up to 

the analyst to isolate which of the assumptions is likely 

to be in error and make adjustments in the assumptions until 

the residuals pass the required hypothesis tests, 

If all four of the previous assumptions are considered 

as the null hypothesis to be tested, it is most difficult to 

compute the power of the tests under deviations from the null 

hypothesis. In order to compute the test power, the distri- 

bution of the sample characteristics under deviations from 

the null hypothesis must be found. This is very difficult 

to do for very general deviations from the null hypothesis. 

Only when possible deviations from the null hypothesis are 

relatively simple, say errors in the covariances of the 

noises, can power of the test be computed. Even then, when 

the residuals are vector valued with time varying conditional 

covariance, the computation of the test power is most 
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difficult. However, even if the test power is not known 

accurately, it can be expected that the tests will indicate 

significant deviations from the null hypothesis, which is 

the primary purpose of such tests. 

The measurement residual is not the only observable 

random variable upon which hypothesis tests can be based. 

Consider the situation when the values of R and Q used to 

compute the state estimation weighting matrices may be in 

error. It is desired to test a hypothesis concerning the 

values of these parameters. In Chapter 3, it was shown that 

the score 

evaluated at the true value of the parameters a is asymp- 

totically normal with zero mean and covariance J (a ) ,  

where a is the true value of a ,  In the case of state and 

noise variance estimation, the parameter set a consists of 

n o  

0 

11 nn RYy,Q r - m r Q  1 -  ,.., 11 the state xn and the vector ST = (R 

If the score is computed as a function of the measurements 

and the a priori values of R and Q, a large score will 

indicate that the a priori values of R and Q are probably 

in error. 

Only those components of the score corresponding to 

differentiation by 5 are useful in testing the hypothesis 

on R and Q because it was seen that 

(5.7.1) 
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evaluated at the estimated value of xn is identically zero, 

regardless of the true value of R and Q. 

quantity 

However, the 

(5.7.2) 

is a useful indicator for testing the hypothesis. If the 

null hypothesis R = Ro and Q = Qo is true, then S: is 

asymptotically a zero mean normal variable with covariance 

A A 

A J' (a) n 

There are two functions of the score (5.7.2) which 

might be used for hypothesis testing. Define 

where 

Then each component of the vector t is asymptotically an 

independent zero mean unit variance normal variable. Tests 

on t can be conducted using the results of tests on the mean 

of a random variable with known variance. A significant t 

will indicate that one or more elements of the a priori 

values of R and Q are in error. 
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Another p o s s i b l e  t e s t  v a r i a b l e  i s  d e f i n e d  by 

I t  can  be shown t h a t  under t h e  n u l l  h y p o t h e s i s ,  x 2  i s  asymp- 

t o t i c a l l y  a c e n t r a l  c h i  squa re  random v a r i a b l e  w i t h  r degrees  

of freedom, where r i s  t h e  dimension of t h e  v e c t o r  6. T e s t s  

on t h i s  v a r i a b l e  can be conducted u s i n g  t h e  r e s u l t s  of tes ts  

on t h e  v a r i a n c e  p r e v i o u s l y  o u t l i n e d .  

I t  i s  d i f f i c u l t  t o  assess t h e  r e l a t i v e  power of t h e s e  

two tes ts  under d e v i a t i o n s  from t h e  n u l l  hypo thes i s .  Even i f  

t h e  d i s t r i b u t i o n  of t h e  s c o r e  under d e v i a t i o n s  from t h e  n u l l  

hypo thes i s  could be found,  t h e  power of t h e  t es t s  could  be  

found on ly  a f t e r  g r e a t  computa t iona l  expense.  However t h e s e  

tests do have t h e  d i s t i n c t  advantage of u s i n g  tes t  parameters  

which a l low a de t e rmina t ion  of t h e  f i r s t  l i n e a r  c o r r e c t i o n  i n  

t h e  a p r i o r i  v a l u e s  of R and Q i f  t h e  hypo thes i s  t e s t  f a i l s ,  

u s i n g  t h e  r e s u l t s  of t h e  l i n e a r i z e d  maximum l i k e l i h o o d  so lu-  

t i o n  d i s c u s s e d  i n  Chapter 4. 
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Chapter 6 

NUMERICAL RESULTS 

6.1 Introduction 

Theoretical results about various techniques for esti- 

mating noise covariance parameters and testing statistical 

hypotheses have been developed in the preceding chapters. 

This chapter is devoted to a discussion of the results of a 

digital computer simulation of the equations derived. The 

purpose of this simulation is twofold. The theoretical 

results must be checked to ensure that they accurately portray 

the situation. Once the validity of these results is 

established, a numerical comparison of the various techniques 

for estimating the noise covariance parameters will be made 

to determine the trade-offs involved in using simpler but 

less accurate methods of estimation. 

The principal theoretical results that are to be checked 

are : 

1) convergence of the iterative maximum likelihood 

solution 

2) the unbiasedness of the maximum likelihood solution 

3 )  comparison of the actual mean squared estimation 

error of the maximum likelihood solution with the 

inverse information matrix 

4 )  the range of applicability of the linearized 

maximum likelihood solution 

I 
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5) convergence of the near maximum likelihood solution 

6) comparison of actual mean and mean squared estimation 

error of the explicit suboptimal solution with the 

theoretical expressions for the quantities 

7) the sensitivity and power of hypothesis testing in 

realistic situations 

The system simulated was purposely made simple. Many 

of the estimation equations are very complex and require 

iterative solutions. Only by limiting the complexity of the 

system and the number of parameters to be estimated could 

the required computations be kept within reasonable limits, 

In checking the above theoretical results, Monte Carlo 

simulations are required. Many trials are required in which 

actual noises and realistic parameter values are simulated, 

this being a time consuming and expensive procedure. However, 

once the theoretical results are established, then Monte Carlo 

simulations are not required, thus allowing statistical simu- 

lation in which only the expressions for the mean and mean 

squared error of the estimates are computed, resulting in the 

ensemble average of the results that would be obtained if a 

large series of Monte Carlo simulations were performed. 

6.2 Description of System and Measurement 

The system simulated is a second order damped oscillator 

with time invariant damping ratio and natural frequency, 

driven by stationary zero mean uncorrelated normally distri- 

buted noise. The state of the system is defined as a two 
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component column vector of the position and velocity coor- 

dinates of the system. 

x = @(n,n-l)xn-l + r n  W n n 

where x is the state at time "n" n 

is the state at time 'In-1" n-1 X 

@(n,n-1) is the 2 x 2 state transition matrix 

w is either a scalar or 2 x 1 column vector n 
driving noise 

is either a 2 x 1 or 2 x 2 forcing function 

matrix 
rn 

Q is the driving noise covariance matrix 

The state transition matrix obeys the differential 

equation 

For a second order oscillator with time invariant parameters, 

where 5 is the damping ratio and Q is the system natural 

frequency. 
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The measurement of the state is either a scalar or a 

2 x 1 column vector defined by 

z = Hn xn + vn n 

where H is a 1 x 2 or 2 x 2 time invariant measurement 
n 
matrix 

v is a scalar or 2 x 1 column vector measurement n 
noise 

R is the measurement noise covariance matrix 

In the simulation of variance estimation, the values of 

the diagonal elements of the measurement and driving noise 

covariance matrices are chosen from a Gamma distribution as 

described in Chapter 3. 

6.3 Effect of Incorrect Noise Covariance Parameters - Upon 

Maximum Likelihood State Estimation 

In Section 2.3 equations were derived for the evaluation 

of the performance of a maximum likelihood state estimator 

when incorrect values of the measurement and driving noise 

covariance matrices are used in the computation of the mea- 

surement residual weighting matrices. It was shown that even 

if incorrect values of the noise parameters are used, the 

maximum likelihood estimator remains unbaised. However, the 

covariance of the estimation error is a function of the errors 

in the noise parameters. In this simulation the "true" and 
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"computed" state covariance matrices are calculated as 

functions of the true and assumed values of the measurement 

and driving noise covariance matrices. 

From (2.3.39) and (2.3.42), the computed state covari- 

ance matrix obeys the recursive relationships 

* 
'n 

* 
'n 

* 
An 

- * T *  * T -1 
- 'nln-1 Hn(R + HnPnln-l Hn) 

* * 
where R and Q are the assumed values of the measurement and 

driving noise covariance matrices. 
I !  

From (2.3.43) and (2.'3.44), the true state covariance 

matrix obeys the recursive relationships 

where R and Q are the true values of the measurement and 

driving noise covariance matrices. It is assumed that 

* 
= P  

010 010 
P 
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The following graphs show the variation in the trace of 

the true and computed covariance matrices after the last 

measurement as a function of the estimated values of R and Q. 

For simplicity the measurement and driving noises are scalar 

random variables and the time interval between measurements 

is constant. The parameters of the system and the measure- 

ments are: 

5 = .05, R = .1 rad/sec 
T H~ = ( L O ) ,  rn = ( 0 , ~  

Time between measurements = 1 sec 
Total number of measurements = 2 0 0  

For the values of the system and noise parameters chosen, 

the covariance equations reach a steady state after 

approximately 10 measurements. 

It should be noted that each of the two diagonal 
* * 

had the same general variation with R 
nln elements of P 

* * 
and Q as the trace of Pnln. For simplicity, only graphs 

* * * 
of the trace of P versus R and Q are shown. 

nln 
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As can be seen, the trace of the true state estimation 

is not highly sensitive to 
nln 

error covariance matrix P 

errors in the estimated values of R or Q. This means that 

the estimation error is not highly sensitive to use of 

incorrect values of R and Q in the computation of the measure- 

ment residual weighting matrices. However, the trace of the 

computed state estimation error covariance matrix P 

strong function of errors in R and Q. This means that for 

moderate errors in R and Q, the computed covariance matrix 

is a poor representation of the actual state estimation error 

* 
is a 

nln 

covariance. Although the actual error covariance may be 

small, there is no way to know this unless R and Q are very 
* * 

near the true values of R and Q. Therefore any decision made 
* 

about the probable state estimation error using P n l n  may be 
* 

and P . 
nln nln 

incorrect due to the large difference between P 

6 . 4  Comparison of State - ~- and Nois. - Covariance Estimation -- 

Procedures 

Four procedures for estimating the state and noise 
- ~ -  

covariance parameters are simulated and compared: 

1) maximum likelihood 

2 )  linearized maximum likelihood 

3) near maximum likelihood 

4) explicit suboptimal 

The simulations are divided into two parts, Monte Carlo 

;imulations and statistical simulations. 
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Maximum Likelihood __ and Linearized Maximum Likelihood 

The equations for the simultaneous estimation of the 

system state and noise covariance parameters with a priori 

information about the state and noise covariance were solved 

by the iterative procedures of Section 3 . 6 .  In Chapter 3 ,  

it was shown that the asymptotic distribution of the R and Q 

estimation error is a zero mean normal distribution with 

conditional covariance W ( E ) ,  where W i l ( E )  is a submatrix of 

the conditional information matrix, and 
n 

11 11 rln tT = ( R  ,. . ,RYY,Q ,. . i~ 

In an actual situation, the above matrix cannot be computed 

because the true value of 5 is unknown. However, it is 

usually a good approximation to compute W-l at the estimated 

value of 5 if a measure of the R and 0 estimation error 

covariance is desired. All evaluations of the conditional 

information matrices in this section are at the true value 

of 5.  

n 

- 

In the case of scalar R and Q, W ( 5 )  is a 2 x 2 matrix n 
with elements 
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where AR and AQ represent the R and Q estimation error. The 

square root of the appropriate diagonal element of W ( 5 )  is 

the standard deviation of the corresponding noise covariance 

parameter asymptotic estimation error. The normalized esti- 

n 

mation error can then be defined by 

A 

R - R  e =  R (6.4.1) 

h 

where R is the estimate of R on a given trial, R is the true 

value of R on that trial, and a i  is the standard deviation of 

the error as given above. A similar expression is used to 

define the normalized Q estimation error. 

In order to check the theoretical unbiasedness and 

covariance of the estimates, the mean and mean squared error 

of the estimates over the ensemble of trials is computed and 

compared with the mean of the true values of R and Q and the 

average conditional information matrix. The average R is 

defined by 

ave(R) = - K f Rj 
j=1 

(6 .4,2)  

where R 

number of trials. A similar expression is used to compute 

ave(Q). The average of R is defined by 

is the value of R on the jth trial and K is the 
j 

A 

f ij h 

ave(R) = 

j=1 
(6.4.3) 
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A A 

where R is the value of R on the jth trial. A similar 
h 

j 
. .  

expression is used to compute ave(Q) . 
The theoretical mean squared estimation error, averaged 

over the ensemble of all possible R and Q, was given in 

Chapter 3 by 

As was noted, the above integral is difficult to compute. An 

easier to compute and possibly better measure of the average 

conditional covariance over the ensemble of values of 5 

actually experienced in the trials would be 

K . . -  
( 6 . 4 . 4 )  

where 5 

mean squared estimation error matrix is defined by 

is the value of 5 on the jth trial. The actual j 

K 

(6 .4 .5 )  
j=1 

Similar expressions are used to compute the mean and 

mean squared estimation error of the linearized solution of 

the likelihood equations. The conditional information matrix 

associated with the linearized solution is computed at the 

a priori values of R and Q. If these values are not close to - 
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the true values, the information matrix computed at the a priori 

values may not accurately represent the inverse of the esti- 

mation error covariance. However, it represents the best 

measure of the estimation error covariance that would be 

available for a real time solution without having to recompute 

the information matrix at the linearized estimates of R and Q. 

Figure 6.5 and Table 6 . 1  give the results of a ten 

sample Monte Carlo simulation. The system and measurement 

parameter values are those previously given, while the true 

values of R and Q are different on each trial. The values 

are selected from a Gamma distribution with 

E ( R )  = E = 1 . 0 ,  E ( Q )  = 0 = 0 . 5  

- 2  E [ ( R  - R )  1 = 1 . 0 ,  E [ ( Q  - = 0.25 

If there was no estimation error, the estimates of R 
A A 

and Q would lie along the diagonal line R = R and Q = Q.  

The dispersion about this line is a measure of the estima- 

tion error. 

Shown in Table 6.1 are the standard deviation of the R 

and Q estimation error and the normalized estimation error 

defined by (6.4.1). Also shown are the results of the 

linearized maximum likelihood solution. The estimates of R 

and Q are those obtained on the first iteration of the optimal 

solution. As described in Section 4.2, the linearized solu- 

tion represents an estimate of R and Q that can be obtained 
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i n  real  t i m e .  The i n i t i a l  estimates of R and Q w e r e  equa l  

t o  t h e  means of t h e i r  r e s p e c t i v e  d i s t r i b u t i o n s .  A s  can be 

seen ,  t h e  l i n e a r i z e d  s o l u t i o n  i s  q u i t e  close t o  t h e  i t e r a t i v e  

s o l u t i o n  even f o r  l a r g e  d e p a r t u r e s  of t h e  t r u e  v a l u e s  of R 

and Q from t h e  i n i t i a l  estimates which w e r e  used t o  compute 

t h e  score and c o n d i t i o n a l  i n fo rma t ion  matrices. 

F igu re  6 . 6  and Table  6 . 2  show t h e  r e s u l t s  of a n o t h e r  

s e t  of t e n  Monte C a r l o  t r i a l s  w i t h  a d i f f e r e n t  set of random 

numbers used t o  s i m u l a t e  t h e  n o i s e s  and a d i f f e r e n t  se t  of 

v a l u e s  of R and Q chosen fromaGamma d i s t r i b u t i o n  wi th  

E ( R )  = 1 0 ,  E ( Q )  = 1 

- 2  - 2  E[(R - R) ] = 100, E [ ( Q  - Q )  ] = 1 

Again t h e  a c t u a l  mean and mean squared  e s t i m a t i o n  e r r o r  

over  t h e  ensemble of t e n  t r i a l s  w e r e  computed and compared 

wi th  t h e  t h e o r e t i c a l  r e s u l t s ,  I t  can be seen  t h a t  t h e  mean of 

t h e  es t imates  compares q u i t e  w e l l  w i t h  t h e  mean of t h e  a c t u a l  

v a l u e s  of R and Q o  However, t h e r e  i s  a r a t h e r  l a r g e  d i f f e r -  

ence  between t h e  t h e o r e t i c a l  and a c t u a l  mean squared e s t i m a t i o n  

error m a t r i c e s .  This  i s  a hazard of t r y i n g  t o  compute ensemble 

s t a t i s t i c s  on t h e  b a s i s  of t e n  samples. Almost a l l  of t h e  

a c t u a l  mean squared R e s t i m a t i o n  e r r o r  c o m e s  from Sample 7 ,  t h e  

e r r o r  be ing  n o n r e p r e s e n t a t i v e  of t h e  expec ted  e r r o r .  The a c t u a l  

e r r o r  was a 2 . 5 7  sigma e r r o r  based upon t h e  s t a n d a r d  d e v i a t i o n  

ob ta ined  from t h e  c o n d i t i o n a l  i n fo rma t ion  ma t r ix .  Omit t ing t h i s  

sample from t h e  ensemble averages  r e s u l t s  i n  good agreement be- 

tween t h e o r e t i c a l  and a c t u a l  mean squared  e r r o r s .  
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Fig. 6.5 Maximum Likelihood Solution Run 1 

Fig. 6.6 M a x i m u m  Likelihood Solu t ion  Run 2 
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Table 6 . 1  Monte Carlo Run 1: Maximum Likelihood 

and Linearized Maximum Likelihood Solutions 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

R 

0 . 8 6 0  

1 . 5 9 9  

0 . 5 2 2  

1 . 2 8 8  

0 . 5 2 6  

0 . 1 0 2  

0 . 3 0 4  

1 . 7 1 8  

0 . 1 6 0  

0 . 4 8 4  

. 7 5 6  

A 

M.L. R 

0 . 9 7 9  

1 . 4 6 1  

0 . 3 8 4  

1 . 2 7 6  

0 . 4 0 4  

0 . 0 9 6  

0 . 2 9 1  

1 . 4 7 0  

0 . 1 8 8  

0 . 5 2 3  

. 7 0 0  

crA R 
0 . 1 1 8  

0 . 2 0 7  

0 . 0 7 4  

0 . 1 6 5  

0 . 0 9 2  

0 . 0 2 1  

0 . 0 4 7  

0 . 2 0 0  

0 . 0 5 2  

0 . 0 9 2  

0 . 1 0 7  

e;; 

+l. 0 1 4  

- 0 . 6 7 0  

- 1 . 8 7 6  

- 0 . 0 7 4  

- 1 . 3 2 2  

- 0 . 2 7 6  

- 0 . 2 8 8  

- 1 . 3 8 6  

- 0 . 8 0 7  

+ O .  4 2 5  
~ 

- 0 . 5 2 6  

Theoretical Mean Squared Estimation Error 

Linearized 1 terative 

- 0 . 0 1 8 4  - 0 . 0 0 3 9 ]  [ 0 . 0 1 5 2  - 0 . 0 0 3 5  

- 0 . 0 0 3 9  0 . 0 1 0 1  - 0 . 0 0 3 5  0 . 0 1 6 3  
- 

Actual Mean Squared Estimation Error 

Linearized Iterative 

r 0.0121 - 0 . 0 0 3 4 1  0 . 0 1 3 3  - 0 . 0 0 3 4  

1 -0 .0034  0 . 0 2 3 3  - 0 . 0 0 3 4  0 . 0 2 0 4  

A 

Lin. R 

0 . 9 7 8  

1 . 4 4 9  

0 . 3 9 1  

1 . 2 8 6  

0 . 3 9 4  

0 . 0 9 6  

0 . 3 1 7  

1 . 4 8 9  

0 . 1 2 8  

0 . 5 1 4  

. 7 0 4  

2 4 2  



Table 6 . 1  (Continued) Monte Carlo Run 1 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

Q 

0 .456 

0 .512 

0 .330 

0 .360 

0.997 

0 .327  

0 .329  

0.145 

1 . 4 8 7  

1 . 2 4 9  

h 

M . L .  Q e" Q 

A 

Lin. Q 

0.445 0.093 -0 .115  , 4 5 0  

0.484 0.111 -0 .260 .483 

0 .447 0 .066  +1.770 .463 

0.498 0.079 

0.174 

+1.740 .483  

1 .286  +l. 6 6 5  1 .264  

0 .308  0 . 0 5 6  -0 .345  . 3 6 2  

0 .328  0.062 -0  0 009  336  

.120 

1 . 1 3 3  

1 .214  

.636  

0 .128 0 .037 -0 .480  

1 .194  0 . 2 2 1  -1 .325  

1 . 2 4 2  

. 6 4 1  

0 .209 -0 .004 

.619  0.111 +0.264 

2 4 3  



Table  6.2 Monte C a r l o  Run 2: M a x i m u m  Like l ihood 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

and L inea r i zed  M a x i m u m  Like l ihood S o l u t i o n s  

R 

8 . 2 3 1  

8.104 

1 0 . 3 5 9  

5 .362 

14 .526  

11 .753  

37 .523 

29.982 

1 0 . 4 9 9  

19 .663  

I\ 

M . L .  R 

7.584 

6.176 

8.369 

5.838 

17 .012 

1 0  5 1 4  

27 .297 

2 8 . 5 5 1  

11 .929  

20 .205 

5i 
1 . 1 2 0  

1 . 0 1 3  

1 . 1 2 3  

0.558 

1 . 7 8 0  

1 . 3 7 5  

3 .980 

3 .290  

1 . 3 1 6  

2 . 1 3 5  

e; 
-0 .606 

-1.900 

-1.770 

+O.  8 5 5  

+l. 400 

-0 .900 

-2.570 

+ O .  436  

+1.090 

+ O .  2 5 4  

A 

Lin .  R 

8.882 

6.303 

8.200 

5.283 

16 .907  

10 .522  

28 .399 

30 .378 

11 .942 

1 8 . 9 1 4  

1 5 . 5 9 9  1 4 . 3 4 9  1 . 7 6 9  - 0 . 3 7 1  

T h e o r e t i c a l  Mean Squared Es t ima t ion  Error  

L inea r i zed  I t e r a t i v e  r 1 . 4 2 0  - 0 . 0 4 9 1  [ 4 . 1 9 1  - 0 . 0 9 2 1  

1 -0 .049  0 . 0 6 3 1  1-0.092 0 .163J  

Actua l  Mean Squared Es t ima t ion  E r r o r  

L inea r i zed  I t e r a t i v e  

[,0e152 0 . 1 7 9 1  [ 1 2 . 4 9 4  0 .425  

0 .179  0.274 0 .425 0.115 

14 .543  
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Table 6.2 (Continued) Monte Carlo Run 2 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

Q 

3 .985  

1 . 6 7 7  

0.089 

0.002 

2 .476 

0 .923  

0 .614  

0.906 

2 . 3 6 1  

0 .255  

A 

M.L. Q 

3.237 

1 . 4 6 1  

0 .044 

0.002 

2 .833 

1 . 0 4 7  

0.786 

0 .878  

2 .895 

0 . 2 1 1  

1 .329  1 . 3 3 9  

o* 
Q 

0.828 

0.385 

0.029 

9 

0 .582 

0 .750 

0.188 

0 .260  

0.537 

0 .080  

0.334 

e;; 
-0 .093 

-0.562 

-1.530 

+o. 000 

+O. 6 1 4  

+0.165 

+ O .  9 1 5  

-0 .017  

+0.995 

-0 .547 

-0 .087 

Lin. Q 

2.784 

1 .422 

0 .088 

0.046 

3.164 

1 .048 

0.637 '  

0 .592 

3 .134 

0.455 

1 .337  

2 4 5  



Runs 3 and 4 and the corresponding Tables 6.3 and 6.4 

are the results of the above two runs repeated except that 

the values of R and Q are held fixed at the same values on 

each trial. Different random numbers were used to simulate 

the measurement and driving noises. These runs simulate an 

ensemble of trials with a fixed value of 5 so that the 

conditional information matrix is the same for each trial. 

Then the theoretical mean squared estimation error is given 

by Wn(So), where 5, is the value of 5 for every trial. 

0' 

The agreement between the sample mean and mean squared 

estimation error and the theoretical results is quite good 

for both runs. A better correspondence between theoretical 

and actual results is expected in these runs than in the first 

two runs because the ten trials in each of these runs are 

samples from an ensemble of trials with different noises but 

with the same noise covariances. The first two runs were 

samples from an ensemble with different noises - and different 

noise covariances. 
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Fig. 6.7 Maximum Likelihood Solution Run 3 
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Fig. 6.8 Maximum Likelihood Solution Run 4 
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Table 6 . 3  Monte Carlo Run 3: Maximum Likelihood 

and Linearized Maximum Likelihood Solutions 

Sample R 

1 1 . 0  

2 1 . 0  

3 1 . 0  

4 1 . 0  

5 1 . 0  

6 1 . 0  

7 1 . 0  

8 1 . 0  

9 1 . 0  

10 1.0 

Average 1.0 

- 

A 

M.L. R O;; 

0 . 1 3 6  

e* R 
+ O .  96  

A 

Lin. R 

1 . 1 3 0  1 . 1 3 4  

1 . 2 9 5  0 . 1 3 6  + 2 . 1 8  1 . 2 8 6  

. 9 8 2  0 . 1 3 6  - 0 . 1 3  . 9 7 7  

1 . 1 0 6  

. 9 2 1  

0 . 1 3 6  

0 . 1 3 6  

+ 0 . 7 8  

- 0 . 5 8  

1 . 1 1 0  

. 9 3 5  

- 0 . 4 7  . 9 3 6  0 . 1 3 6  . 9 3 4  

. 8 2 1  0 . 1 3 6  - 1 . 3 2  . 8 1 0  

. 8 0 7  

. 9 0 8  

0 . 1 3 6  

0 . 1 3 6  

- 1 . 4 2  . 8 1 0  

. 9 3 9  - 0 . 7 2  

1 . 0 4 3  0 . 1 3 6  + 0 . 3 2  1 . 0 3 8  

. 9 9 5  0 . 1 3 6  - 0 . 0 4  . 9 9 8  

Theoretical Mean Squared Estimation Error 

Linearized Iterative 

. 0 1 8 4  - .0039]  [ . 0 1 8 2  - . 0 0 3 6  

[- .0039 .lo1 - . 0 0 3 6  . 0 0 9 6  - 1 
Actual Mean Squared Estimation Error 

Linearized Iterative 

_-. 0 0 8 4  . 0 1 4 0  

. 0 1 9 7  - . 0 0 7 6  

- . 0 0 7 6  .0118 

2 4 8  



Table 6.3 (Continued) Monte C a r l o  Run 3 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

Q 

.50  

.50 

.50  

.50  

. 5 0  

. 5 0  

.50  

.50  

. 5 0  

.50 

. 5 0  

- 

A 

M.L. Q 

.421 

. 357  

.534 

.495  

.392  

. 5 5 6  

.575  

. 4 6 5  

.712  

.287  

.479  

- 

C I A  Q 
.lo1 

.lo1 

.lo1 

,101 

,101 

. l o 1  

. l o 1  

. l o 1  

. l o 1  

. l o 1  

. l o 1  
- 

e;; 
-0 .79 

-1.43 

+0.34  

-0 .05  

-1 .08  

+0.56 

+0.75 

- 0 . 3 5  

+2.12 

-2 .13  

- 0 . 2 1  

A 

Lin .  Q 

.418 

. 358  

.537 

0 490 

.387  

.549  

.587  

. 4 7 1  

.672  

.304  

.478  

- 

2 4 9  



Table 6 . 4  Monte Carlo Run 4:  Maximum L ike l ihood  

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

and L i n e a r i z e d  M a x i m u m  L ike l ihood  S o l u t i o n s  

A A 

e^ Lin.  R 

1 0 . 0  1 0 . 8 1 2  1 .185  + O .  7 1 5  1 0 . 8 5 8  

1 0 . 0  9 . 5 2 7  1 .185 - 0 . 2 9 1  9 . 6 5 8  

1 0 . 0  9 . 8 7 2  1 .185  - 0 . 1 0 5  9 . 8 7 6  

1 0 . 0  9 . 7 5 0  1 . 1 8 5  - 0 . 2 3 6  9 . 7 2 1  

1 0 . 0  1 1 . 6 2 4  1 .185  + 1 . 3 3 0  1 1 . 5 7 3  

1 0 . 0  11.385 1 .185  +l. 2 1 0  1 1 . 4 3 7  

1 0 . 0  1 2 . 1 9 5  1 .185 + 2 . 1 2 0  1 2  5 1 4  

1 0 . 0  1 1 . 7 4 8  1 .185 +l. 5 1 0  1 1 . 7 8 1  

1 0 . 0  7 . 7 5 7  1 . 1 8 5  - 0 . 9 8 5  7 . 8 3 1  

- 1 0 . 0  9 . 7 6 1  1 . 1 8 5  - 0 . 9 0 5  9 . 8 9 3  

1 0 . 0  1 0 . 4 4 3  1 .185 +o.  3 7 4  1 0 . 5 1 4  

“i R R M . L .  R 

T h e o r e t i c a l  Mean Squared 

L i n e a r i z e d  

1 . 4 0 5  - . 059  [- . 0 5 9  . 0 5 8  

E s t i m a t i o n  E r r o r  

I t e r a t i v e  

1 1 . 5 0 3  - . 0 5 0  

.- .050  . OllJ 

Actua l  Mean Squared Es t ima t ion  E r r o r  

L inea r i zed  

1 . 9 7 0  - . 3 2 1  [- . 3 2 1  . l o 6  1 
I t e r a t i v e  

1 . 8 4 8  - . 2 9 6  [- . 2 9 6  . l o 7  1 
2 5 0  



Table 6.4 (Continued) Monte Carlo Run 4 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

Q 

1 . 0  

1 . 0  

1 . 0  

1 . 0  

1.0 

1 . 0  

1 . 0  

1 . 0  

1.0 

1 . 0  

A 

M . L .  Q 

. 8 2 0  

. 6 4 1  

.975  

1 . 3 4 1  

.715  

. 7 8 5  

. 7 2 1  

. 6 4 8  

1 . 4 6 1  

.494  

1 . 0  . 8 6 0  

a" Q 
. 238  

.238  

.238  

.238  

. 2 3 8  

.238 

.238  

.238 

. 2 3 8  

. 2 3 8  

. 2 3 8  

- 

e;; 
-0 .757 

-1 .510  

-0.105 

+1.430 

-1.200 

-0 .905  

-1 ,170  

-1 .480 

+1 .930  

-2 .120 

A 

Lin. Q 

., 814  

. 6 3 7  

.976  

1 . 3 2 9  

.737  

.776  

. 6 4 5  

.654  

1 . 4 1 3  

.502  

-0 .590 .848  

2 5 1  



In Runs 1-4, the measurement and driving noise covariance 

matrices are scalars. In Run 5, both R and Q are 2 x 2 

matrices, so that four noise covariance parameters are to be 

estimated, the diagonal elements of R and Q.  Figures 6.9 and 

6.10 and Table 6.5 show the results of a ten sample Monte 

Carlo simulation. 

As before, the theoretical and actual mean and mean 

squared estimation error matrices were computed. Now the 

mean squared estimation errors (both theoretical and actual) 

are 4 x 4 matrices, with elements 

where AR and AQ represent the R or Q estimation error and the 

bar over these quantities indicates either the theoretical 

or actual mean, depending upon which matrix is given. 

As can be seen, increasing the number of quantities to 

be estimated did not degrade the performance of the estima- 

tor. Of course, the number of computations needed to estimate 

four covariance parameters is considerably greater than that 

needed to estimate two covariance parameters. 
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Fig. 6.10 Maximum Likelihood Solution Run 5 (cont'd.) 
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Table 6 . 5  Monte Carlo Run 5: Maximum Likelihood 

I - 0 . 1 6 6  3 . 8 2 4  - 0 . 6 9 2  0 . 0 4 7  

- 0 . 3 8 3  - 0 . 6 9 2  6 . 3 0 2  - 0 . 6 2 1  

0 . 0 3 7  0 . 0 4 7  - 0 . 6 2 1  0 . 3 2 5  
.- 

and Linearized Maximum Likelihood Solutions 

Sample 
RO 

1 3 . 8 5 7  

2 . 1 3 7  

A 

r8.L. R~ 

1 1 . 8 0 6  

o A  
RO 

1 . 5 7 8  

eh 

- 1 . 3 0 0  
RO 

A 

Lin. Ro 

1 1 . 8 3 6  

1 . 8 8 7  - 0 . 4 1 6  2 0 . 5 9 8  2 . 3 7 3  

3 0 . 4 8 3  0 . 3 1 3  0 . 4 5 2  

2 . 0 1 3  

- 0 . 3 7 6  

+ 0 . 3 9 6  

5 . 0 0 0  

4 1 4 . 7 1 7  

4.553 

1 5 . 5 1 2  

4 . 6 7 7  

1 5 . 0 4 7  

5 1 . 0 3 0  + o .  1 2 0  4 . 2 4 3  

6 4 4 . 5 9 7  4 7 . 6 5 7  4 . 6 1 0  + O .  6 6 5  4 6 . 8 0 3  

2 . 6 9 2  

1 . 9 6 3  

2 . 6 9 8  

2 . 7 7 8  

2 . 8 6 5  

0 . 5 4 6  

0 . 6 3 6  

0 . 7 2 4  

+ O .  1 5 7  

+l. 4 1 0  

2 . 9 1 7  

8 2 . 4 0 7  

9 2 . 2 8 1  - 0 . 5 7 5  2 . 4 7 5  

10 3 . 9 7 2  4 . 1 0 6  0 . 4 6 7  + 0 . 2 8 7  4 . 0 8 9  

9 . 7 7 2  Average 9 . 1 6 7  9 . 3 5 8  1 . 2 6 5  + O .  0 3 7  

Theoretical Mean Square Estimation Error Matrix 
r 

/ 3 . 0 8 6  - 0 . 1 6 6  - 0 . 3 8 3  0 . 0 3 7  1 
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T a b l e  6.5 ( C o n t i n u e d )  Monte C a r l o  R u n  5 

A 

e* 
R 1  

M.L. R1 CIA 
R1 R 1  

Sample 

1 2.937 3 .115  0 .752 + O .  2 3 7  

2 8.702 9 .063 1 .057 + O .  340  

3 8 .325 8 .690 0 .965 +0.400 

4 31 .170 3 5 . 1 7 1  3 .400 +l. 1 8 0  

5 44 .397 4 0 . 8 7 1  4.420 -0 .800 

6 5 .500 4 .835 1 . 6 0 0  -0 .415 

7 0 .953 0.654 0 . 4 7 6  -0 .630 

8 2 . 8 2 3  2 .636 0 .670  -0 .280  

9 7 . 5 9 8  8 . 7 8 5  1 . 0 3 2  +1.150 

1 0  1 . 4 7 3  1 . 1 4 6  0 .272  -1 .200  

A v e r a g e  1 1 . 3 8 8  1 1 . 4 5 0  1 . 4 6 4  -0 .002 

A c t u a l  Mean Squared E s t i m a t i o n  E r r o r  

I 1 . 5 5 1  -0 .043 1 . 1 0 1  -0 .055  

-0 .043 3 .070  -1 .626 0 .165 

1 . 1 0 1  - 1 . 6 2 6  4.305 -0 ,289  

-0 .055  0.165 -0 .289 0 . 6 1 8  

A 

Lin .  R1 

3 .892  

8 .619  

9.639 

34 .572 

40 .560 

6 .464 

1 .349  

1 . 9 2 4  

8.317 

1 . 1 4 6  

11 .648 

2 5 5  
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Table 6.5 (Continued) Monte C a r l o  Run 5 

QO Sample 
M . L .  Qo A 

0 -  
QO 

e" 
QO 

-0 .750 

+ O .  803  

,. 
L i n .  Qo 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

4.550 

7.568 

1 3  e 596  

1 . 5 5 1  

0 , 6 2 1  

1 4 . 5 8 3  

2 5 . 4 5 1  

29 .335  

1 3 . 6 7 7  

1 . 0 5 2  

2.953 2 . 1 3 5  5 . 0 0 0  

8.707 8.962 1 .732  

1 3 . 8 2 4  

0.735 

2.480 

2.450 

+ O .  3 1 1  17 .180  

0 .306  

4.077 

-0 .333  

+0.675 2.410 2 .249  

+0.295 13 .408  1 5 . 6 6 8  3.660 

26.445 2.980 + O .  3 3 4  24 .907  

+1 .640  3 3 . 9 7 1  34.589 3 .250  

1 1 . 9 1 2  

1 . 4 2 4  

1 1 . 8 7 6  

2 .040  

0 .610  

2 .375  

-0 .864  1 1 . 4 3 3  

+ O .  6 1 0  

+ O .  2 7 2  

1 . 3 9 8  

1 2 . 0 3 9  Average 1 1 . 1 9 8  
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Table 6.5 (Continued) Monte C a r l o  Run 5 

A h 

L i n .  Q, Sample Ql M . L .  Q1 e^ 
Ql I 

4 .255  

1 .568 

5 .173 

1 . 3 5 5  

3 .357  

0 .885 -0.083 

-0 .169 

5 . 6 4 1  4.183 

1 .488  

7 .393 

1 .050  

2 .482 

1 . 5 2 3  

0 . 4 2 1  

0 . 0 2 1  

0.433 

0 . 7 4 1  

1 .978  

0 .473  1 .423  

+2.100 1 .043  6.742 

0 . 4 1 1  -0 .742 1 .032  

2 .223  

1 . 5 0 2  

-1 .150  0 .762 

6 1 . 2 1 8  0 . 4 5 1  +0.744 

7 0 . 6 6 2  0.316 -0 .764  0 .196 

8 0 .180 0 .123  

0 .164 

-1 .280  0.564 

9 0 .328 +O.  6 4 1  0 .656  

10 0.864 -0 .540 0 . 7 5 1  

2.073 

0 .228  

0.487 Average 1 . 8 9 6  -0 .134 

2 5 7  



A f u r t h e r  check w a s  made concern ing  t h e  hypo thes i s  t h a t  

t h e  R and Q e s t i m a t i o n  errors are z e r o  mean normally d i s t r i -  

buted random v a r i a b l e s  wi th  c o n d i t i o n a l  cova r i ance  W n ( R , Q ) .  

Under t h i s  h y p o t h e s i s ,  t h e  normalized errors e and e are 

zero  mean u n i t  v a r i a n c e  and normally d i s t r i b u t e d .  Define 

R Q 

K 
2 - 

s 2  = L 
R K  ( e l  - e,) 

j=1  

where e’ i s  t h e  normalized R e s t i m a t i o n  e r r o r  on a given 

t r i a l  and K i s  t h e  number of t r i a l s .  S i m i l a r  e x p r e s s i o n s  

R 

are  d e f i n e d  f o r  t h e  Q e s t i m a t i o n  e r r o r s .  F r o m  Chapter  5 ,  
- 

under t h e  above h y p o t h e s i s ,  eR i s  a z e r o  mean normally d i s t r i -  

buted v a r i a b l e  w i t h  v a r i a n c e  

d i s t r i b u t e d  v a r i a b l e  w i t h  K - 1  deg rees  of freedom, wi th  mean 

(K-1) and v a r i a n c e  2K.  

each of t h e  t e n  sample Monte Car lo  t r i a l s  p r e v i o u s l y  p r e s e n t e d .  

2 
( 1 / K )  and K sR i s  a c h i  squared 

- - 
eR, eQ, si, and s 2  w e r e  computed f o r  Q 

I n  most c a s e s ,  t h e i r  computed v a l u e s  w e r e  w i t h i n  one s t a n d a r d  

d e v i a t i o n  of t h e i r  expec ted  v a l u e s  under t h e  above hypo thes i s .  

The re fo re ,  t h e  v a r i a t i o n s  of t h e  computed q u a n t i t i e s  about 

t h e i r  means w e r e  w i t h i n  t h a t  which would be  expected due t o  

t h e  r e l a t i v e l y  s m a l l  sample s i z e  and t h e  above hypo thes i s  can 

be reasonably  accep ted  a s  a v a l i d  h y p o t h e s i s .  

I n  S e c t i o n  4 . 3  a nea r  maximum l i k e l i h o o d  s o l u t i o n  f o r  

e s t i m a t i n g  t h e  s t a t e  and n o i s e  cova r i ance  parameters  was 
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given. In this solution certain terms in the likelihood 

equations and the conditional information matrix were omitted 

and the solution of the resulting "pseudo likelihood equations" 

sought. 

The solution of these equations was attempted using the 

iterative procedure of Chapter 3 ,  whereby the conditional 

information matrix was used as the negative gradient of the 

likelihood equations. Serious difficulty was encountered in 

implementing this solution. The information matrix given by 

( 4 , 3 , 2 )  was nearly singular for the system and measurement 

schedule under study, resulting in an unstable iterative 

procedure. A different technique was then used to attempt 

to find a solution point of the pseudo likelihood equations. 

Essentially, the procedure was to evaluate the score as a 

function of the a priori values of R and Q for a given value 

of the true R and Q. 

values of Ro and Q 

the score. 

chosen to reasonably ensure that R 

smallest or near the smallest magnitude of the score. 

A A 

The solutions for Rn and Qn were the 

which produced the smallest magnitude of 
r\ A 

A A 

0 

A sufficient number of values of Ro and Q were 
0 

A A 

and Qn produced the n 

It was found that the solution point agreed quite well 

with the solution point of the full likelihood equations just 

given, In other words, the solution of the pseudo likelihood 

equations is a good estimate of the noise covariance palameters 

but a different technique of solution must be used when the 

information matrix associated with the pseudo likelihood 

equations is nearly singular. So the computational simplification 
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ob ta ined  by o m i t t i n g  c e r t a i n  terms i n  t h e  l i k e l i h o o d  f u n c t i o n  

and in fo rma t ion  m a t r i x  i s  o f f s e t  by t h e  need f o r  a m o r e  com-  

p l i c a t e d  a l g o r i t h m  f o r  f i n d i n g  t h e  s o l u t i o n  t o  t h e  l i k e l i h o o d  

equa t ions .  

Whenever t h e  in fo rma t ion  m a t r i x  i s  s i n g u l a r  o r  n e a r l y  

s i n g u l a r ,  t h e r e  i s  a r ea l  q u e s t i o n  as t o  whether  t h e r e  i s  a 

unique s o l u t i o n  of t h e  l i k e l i h o o d  e q u a t i o n s .  I n  t h e  c a s e  

mentioned above, i n s t e a d  of a s i n g l e  p o i n t  where t h e  magnitude 

of t h e  s c o r e  i s  minimized, t h e r e  may e x i s t  a l i n e  i n  R and 

Q space  a long  which t h e  magnitude of t h e  score i s  s m a l l  and 

r e m a i n s  e s s e n t i a l l y  c o n s t a n t .  I n  such  s i t u a t i o n s  it i s  

A 

0 
A 

0 

imposs ib le  t o  d i s t i n g u i s h  between errors i n  t h e  estimates 

of R and e r r o r s  i n  t h e  e s t i m a t e s  of Q. 

From t h e  l i m i t e d  s i m u l a t i o n  of t h e  n e a r  maximum l i k e l i -  

hood s o l u t i o n  it i s  f e l t  t h a t  f o r  t h e  system and measurement 

schedule  used ,  a unique s o l u t i o n  of t h e  pseudo l i k e l i h o o d  

equa t ions  does e x i s t .  However, f i n d i n g  t h e  s o l u t i o n  p o i n t  

r e q u i r e s  c o n s i d e r a b l e  t r i a l  and e r r o r .  Because of  t h i s  

compl i ca t ion ,  no series of r u n s  w a s  conducted i n  which t h e  

pseudo l i k e l i h o o d  equa t ions  w e r e  so lved .  From t h e  few t r i a l s  

t h a t  w e r e  conducted,  it i s  f e l t  t h a t  t h e  s o l u t i o n s  a r e  q u i t e  

c l o s e  t o  t h e  s o l u t i o n s  of t h e  f u l l  l i k e l i h o o d  equa t ions .  

E x p l i c i t  Suboptimal 

The e x p l i c i t  subopt imal  s o l u t i o n  of S e c t i o n  4 . 4  w a s  

s imu la t ed  so t h a t  it could be compared w i t h  t h e  maximum 

l i k e l i h o o d  s o l u t i o n .  A series of r u n s  w a s  made t h a t  co r re -  

sponds t o  t h e  series made of t h e  maximum l i k e l i h o o d  s o l u t i o n .  

2 6 0  



I -  
Identical random numbers were used in the simulation of the 

noises so that a meaningful comparison could be made. 

In Section 4 . 4 ,  expressions for the theoretical condi- 

tional and unconditional mean and mean squared R and Q 

estimation error were developed, The conditional mean of the 

R estimation error was given by 

and the conditional mean of the Q estimation was given by 

where F and Mn are defined in Section 4.4. 

mean squared R and Q estimation errors were given by 

The conditional n 

where Gn and Jn are defined in Section 4 . 4 .  

given here is not the conditional information matrix of the 

maximum likelihood solution. 

Note that Jn 

- 
and Mn represent the bias Fn 
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of the estimators and Gn and Jn represent the variance of 

the estimators about the biased values. 

One of the purposes of this simulation is to check the 

validity of the above expressions. To do this, the follow- 

ing variables are defined, 

'3 j If the expressions for the conditional means of iij and Qn 

are accurate, the normalized errors e 

zero mean unit variance random variables. 

should be and e 
Rj j ,j j 

In maximum likelihood estimation, the unconditional 

mean squared error is usually a nonanalytic function. 

However, in the case of explicit suboptimal estimation, an 

analytic expression for the unconditional mean squared error 

was found. Because of the relatively small sample size, 

this expression is not used. The theoretical mean squared 

estimation error for R and Q that is shown in the tables is 

defined as the average conditional mean squared estimation 

error, averaged over the ensemble of values of R and Q 

actually encountered, This is the same definition of the 
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theoretical mean squared estimation error that was used in 

the evaluation of the maximum likelihood estimator. When R 

and Q are scalars, the theoretical mean squared estimation 

error is defined by 

A 

j 
where here R 

is the true value of R on that trial. A similar expression 

is the estimate of R on the jth trial and R 
j j 

is used for the theoretical mean squared Q estimation error. 

The actual mean squared R estimation error is defined by 

K 
2 A ’ K 1 (Rj - Rj) 

j=1 

with a similar expression for the actual mean squared Q 

estimation error. 

In runs 6 and 7 the values of R and Q were selected 

from a Gamma distribution with the same population charac- 

teristics as runs 1 and 2 respectively. The a priori 

estimates of R and Q were chosen to be the theoretical means 

of the appropriate Gamma distribution, 

Several things can be seen from an examination of 

Figures 6.11 and 6.12 and Tables 6.6 and 6.7. First, there 

is good agreement between the actual values of R and Q and 
n n 

their conditionalmeans. There is also good agreement between 

the theoretical and actual mean squared estimation error as 

defined above. This tends to substantiate the validity of the 
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expres s ions  developed i n  Chapter  4 .  

The second t h i n g  t o  n o t i c e  i s  t h a t  t h e  estimates of R 

and Q are b i a s e d  towards t h e  a p r i o r i  v a l u e s  of Ro and Qo. 

The estimates are t o  a l a r g e  deg ree  independent  of t h e  ac tua l  

A A 

v a l u e s  of R and Q on any g iven  t r i a l .  Unlike t h e  maximum 

l i k e l i h o o d  estimator,  t h e  e x p l i c i t  subopt imal  estimator 

remains b i a s e d  even when t h e  number of measurements becomes 

l a r g e .  Th i s  w i l l  become even clearer la te r  when t h e  condi- 

t i o n a l  means of R and Q are computed as f u n c t i o n s  of R and 

Qo f o r  f i x e d  t r u e  v a l u e s  of R and Q .  

A A A 

0 
A 

I n  runs  8 and 9 ,  t h e  t r u e  v a l u e s  of R and Q w e r e  h e l d  

f i x e d  on each  sample a t  t h e  means of  t h e i r  r e s p e c t i v e  d i s t r i -  

b u t i o n s .  A s  can be seen  from F i g u r e s  6.13 and 6 . 1 4 ,  when 

t h e  a p r i o r i  v a l u e s  of R and Q are e q u a l  t o  t h e  t r u e  v a l u e s  

of R and Q ,  t h e  es t imates  R and Q are q u i t e  c l o s e l y  grouped 
A A 

about  t h e  t r u e  v a l u e s .  Runs 1 0  and 11 are r e p e a t s  of runs  6 

and 9 ,  excep t  t h a t  t h e  a p r i o r i  v a l u e s  of R and Q w e r e  n o t  

e q u a l  t o  t h e  means of t h e  r e s p e c t i v e  d i s t r i b u t i o n s  of R and 
- * A 

= 2.0, Qo = 1 . 0  whereas E = 1 . 0 ,  Q = 0.5, 
RO 

Q. For run  1 0 ,  
A A 

and f o r  run  11, Ro = 20,  Qo = 2 whereas E = 1 0 ,  

it can be seen  t h a t  t h e  e s t i m a t o r s  f o r  R and Q are b i a s e d  i f  

= 1. Again 

A A 

t h e  a p r i o r i  v a l u e s  of R 

of t h e i r  r e s p e c t i v e  d i s t r i b u t i o n s ,  e x a c t l y  a s  p r e d i c t e d .  

and Qo are n o t  e q u a l  t o  t h e  means 
0 
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A 

R ,  
A 

Q 
1 

0 1 

Rr  Q 
2 

Fig.IG.11 Explicit Suboptimal Solution Run 6 

4 0  

20 

0 20  

R, 10 Q 
4 0  

Fig. 6.12 Explicit Suboptimal Solution Run 7 
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h 

R ,  

2 

h 

Q 

1 

1 2  3 4 5 6 7 8 9 1 0  

T r i a l  

Fig. 6.13 Explicit Suboptimal Solution Run 8 

10 

20 

A 

Q 

10 

I 

1 2  3 4 5 6 7  8 9 1 0  

T r i a l  

Fig. 6.14 Explicit Suboptimal Solution Run 9 
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h 

Qo 

a 

Fig. 6.15 Explicit Suboptimal Solution Run 10 

10 

20 

A 

Q 

10 

h 

R l  

1 2  3 4 5 6 7 8 9 1 0  
T r i a l  

Fig. 6.16 Explicit Suboptimal Solution Run 11 

- 
R 

10 
h 

Qo 

10 
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Table 6 . 6  Monte Carlo Run 6 :  Explicit Suboptimal 

Solution 

Sample R 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

0 . 8 6 0  

1 . 5 9 9  

0 . 5 2 2  

1 . 2 8 8  

0 . 5 2 6  

0 . 1 0 2  

0 . 3 0 4  

1 . 7 1 8  

0 . 1 6 0  

0 . 4 8 4  

0 . 7 5 6  

A 

R 

0 . 9 9 3  

1 . 0 9 9  

0 . 8 7 9  

1 . 0 6 0  

1 . 0 5 4  

0 . 7 9 7  

0 . 8 3 4  

1 . 0 2 9  

0 . 9 7 0  

1 . 0 6 8  

0 . 9 7 8  

A 

E (R) 

0 . 9 6 5  

1.115 

0 . 8 7 8  

1 . 0 2 7  

1 . 0 0 6  

0 . 7 9 8  

0 . 8 3 7  

1 . 0 6 7  

1 . 0 3 1  

1 . 0 4 6  

0 . 9 7 7  

G A  R 

0 . 0 2 5 2  

0 . 0 4 0 3  

0 . 0 1 6 4  

0 . 0 3 1 5  

0 . 0 2 9 1  

0 . 0 0 8 4  

0 . 0 1 2 3  

0 . 0 3 5 5  

0 . 0 3 1 7  

0 . 0 3 3 2  

0 . 0 2 6 4  

e" R 

+l. 1 1 0  

- 0 . 3 9 8  

+ 0 . 0 6 1  

+ 1 . 0 5 0  

+ 1 . 6 5 0  

- 0 . 1 2 0  

- 0 . 2 4 4  

- 1 . 0 7 0  

- 1 . 9 2 0  

+ 0 . 6 6 5  

+ O .  0 7 9  

Theoretical Mean Squared R Estimation Error: 0 , 2 9 4  

0 . 2 9 6  Actual Nean Squared R Estimation Error: 
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Table 6.6 (Continued) Monte Carlo Run 6 

h h 

c T ^  Q Sample Q Q E (Q) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

0.456 

0 .512 

0 .330 

0 .360  

0 .997 

0 .327 

0 . 3 2 9  

0 . 1 4 5  

1 . 4 8 7  

1 . 2 4 9  

0 .619  

0 .490 

0 .654  

0 .304 

0 .602  

0 .587 

0 .172 

0 .235 

0.543 

0 .456 

0 . 6 1 0  

0 .465  

0 .444 

0.686 

0 .302 

0.544 

0 . 5 1 1  

0.173 

0 .236  

0.607 

0 .553  

0 .577  

0 .463 

0.0405 

0.0648 

0 .0263 

0 .0504  

0 . 0 4 7 2  

0 .0134  

0 . 0 1 9 6  

0 .0568  

0 .0514  

0 .0538  

0 .0424 

eh Q 

+1.130 

-0 .495 

+ O .  076  

+1.150 

4-1.610 

-0.075 

- 0 . 0 5 1  

-1 .130  

-1 .880 

+ O .  615  

+ O .  095  

Theoretical Mean Squared Q Estimation Error: 0.189 

Actual Mean Squared Q Estimation Error: 0 0 1 9 1  
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Table 6.7  Monte Carlo Run 7 :  Explicit Suboptimal 

Solution 

Sample R 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

8 . 2 3 1  

8.104 

10 .349  

5 .362 

14 .526  

1 1 . 7 5 3  

37 .523 

29.982 

1 0 . 4 9 9  

1 9 . 6 6 3  

15 .599 

A 

R 

11 .362  

9.237 

8.452 

7 .442  

14 .625  

10 .269  

16 .213  

1 6 . 6 5 8  

12 .729  

1 2 . 7 6 7  

11 .975  

A 

E (R) 

1 2 . 2 8 0  

9 .997 

9 .238 

7 .419 

1 3 . 0 0 5  

10 .534  

1 9 . 1 9 5  

1 6 . 8 5 6  

1 1 . 4 9 3  

1 2 . 6 3 7  

1 2 . 1 6 6  

";; 
0.674 

0 .447 

0 .373 

0 ,190  

0.748 

0 .510 

1 . 3 8 0  

1 . 1 4 0  

0 .596  

0.716 

0 . 6 7 1  

e" R 

-1 .360 

-1.700 

-2 .105 

+o. 1 2 1  

+2.160 

-0.520 

-2 .160 

-0 .173 

+2.080 

+ O .  1 8 2  

-0.348 

Theoretical Mean Squared R Estimation Error: 59.344 

Actual Mean Squared R Estimation Error: 70.540 
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Table 6.7 (Continued) Monte C a r l o  Run 7 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Aver age 

Q 

3.985 

1 .677  

0 .089 

0,002 

2.476 

0.923 

0 . 6 1 4  

0.906 

2 . 3 6 1  

0 .255 

1 .329  

h 

Q 

1 . 2 8 5  

0 .844 

0 .707  

0 .503 

1 . 8 9 5  

1 .064  

2.183 

2 . 3 2 1  

1 .556 

1 .509  

1 . 3 8 7  

E (6) 
1 . 4 5 2  

1 .002 

0.849 

0.496 

1 .588  

1 .104 

2 .783 

2 .330  

1 .294  

1 . 5 0 9  

1 . 4 4 1  

C I A  Q 

0.576 

0 .087 

0 .072 

0 .036 

0 .146 

0.097 

0 .266 

0 . 2 2 1  

0 .117 

0 .138  

0.176 

e" 
Q 

-0 .290 

-0 .182 

-0.198 

+ O .  1 9 3  

+2 (I 1 0 0  

-0 .410 

-2.250 

-0 .046 

4-2.240 

+o.ooo 
+ O .  1 1 6  

Theoretical Mean Squared Q Estimation Error: 1 . 8 1 7  

Actual Mean Squared Q Estimation Error: 1.566 
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Table 6.8 Monte Carlo Run 8: Explicit Suboptimal 

Solution 

Sample R 
A 

R ";; 
0.0286 

e^ R 

+O.  5 6 0  

+l. 1 9 0  

+ O .  315  

+o. 910 

-1 .120 

+ O .  1 7 5  

-0 .420 

-1 .050 

+l. 610 

-0 .805 

1 . 0 1 6  1 1.0 1.0 

2 1.0 

3 1.0 

1 .034  

1 . 0 0 9  

1.0 

1.0 

0 . 0 2 8 6  

0 .0286 

1 .026  4 1 . 0  1.0 0.0286 

5 1 .0  

6 1 .0 

0 .968 1.0 

1.0 

0.0286 

0 .0286  1 .005  

0.988 7 1 . 0  1.0 0.0286 

8 1.0 0 .970  1.0 

1.0 

0.0286 

0 .0286  9 1 . 0  1 . 0 4 6  

0 .977 

1 .004  

1.0 - 10 1.0 - 0.0286  

+ O .  1 3 7  Average 1.0 1.0 0.0286 

Theoretical Mean Squared R Estimation Error: . 0 0 0 8 2 1  

Actual Mean Squared R Estimation Error: . 000694  
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Table  6.8 (Continued) Monte C a r l o  Run 8 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

Q 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

0 . 5  

0.5 

0 . 5  

- 

A 

Q 

0.529 

0.559 

0.520 

0 .546  

0.454 

0.513 

0 .483  

0.442 

0 .555  

0 .458  

0 .506  

h 

E ( Q )  

0.5 

0.5 

0.5 

0.5 

0 . 5  

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

- 

C I A  
Q 

0.046 

0.046 

0 .046  

0.046 

0.046 

0.046 

0 .046  

0.046 

0 . 0 4 6  

0 . 0 4 6  

0.046 

T h e o r e t i c a l  Mean Squared Q Es t ima t ion  E r r o r :  

Actua l  Mean Squared Q Es t ima t ion  E r r o r :  

e" 
Q 

+O.  630  

+1.280 

+O.  435  

+1.000 

-1 .000 

+O.  284  

-0 .370 

-1 .260  

+1 .200  

-0 .905  

+ O .  1 2 9  

. 0 0 2 1 2 6  

. 0 0 1 7 5 5  
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Table 6.9 Monte Carlo Run 9: Explicit Suboptimal 

Solution 

h A 

e^ 
E (R) O;; R Sample R R 

1 

2 

3 

4 

5 

6 

10 

Average 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

- 

1 0 . 2 1 8  

9.693 

10 .013  

10 .450 

1 0 . 3 5 5  

10 .392  

1 0 . 6 0 0  

10 .423  

9 .850  

9 .542 

1 0 . 1 5 4  

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

- 

0.447 

0 .447 

0 .447  

0 .447 

0 .447 

0 . 4 4 7  

0 .447 

0 .447  

0 .447 

0.447 

0 . 4 4 7  

+0.488 

-0 .687 

+O.  029  

+1.010 

+o. 795 

+ O .  875  

+l. 3 4 0  

+ O .  9 5 0  

-0 .335 

-1 .020 

+ O .  365  

Theoretical Mean Squared R Estimation Error: . 2 0 1  

Actual Mean Squared R Estimation Error: .139 

2 7 4  
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Table 6.9 (Continued)  Monte Car lo  Run 9 

h A 

ah Q Sample Q Q E ( Q )  

6 

7 

8 

9 

10 

Average 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

- 

1 . 0 5 0  

0.935 

1 .013 

1 . 0 8 5  

1 . 0 7 1  

1.C69 

1 . 1 3 2  

1 . 0 7 6  

0 .955  

0 .902 

1 . 0 2 9  

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

- 

0.087 

0.087 

0.087 

0 .087 

0.087 

0.087 

0.087 

0 .087  

0.087 

0.087 

0 .087  

+O.  5 7 5  

-0 .745 

+ O .  1 5 0  

+0.975 

+0.815 

+ O .  7 9 5  

+1.520 

+ O .  875  

-0.517 

-1 .120 

+ O .  333  

T h e o r e t i c a l  Mean Squared Q Es t ima t ion  Error :  .00757 

Actua l  Mean Squared Q Es t ima t ion  E r r o r :  . 00588  
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Table  6.10  Monte Car lo  Run 1 0 :  E x p l i c i t  Suboptimal 

S o l u t i o n  

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

0.859 

1 .599 

0.533 

1 .288 

0 .526 

0 .102  

0.304 

1 .718 

0 .160 

0 .484  

0 .756 

1 .708  

1 .819  

1 .593  

1 . 7 7 5  

1 .770  

1 . 5 1 1  

1 . 5 4 7  

1 .746  

1 . 6 8 5  

1 . 7 8 5  

1 .694  

1 . 6 8 0  

1 . 8 3 1  

1 .592  

1 .743  

1 . 7 2 1  

1 .512 

1 . 5 5 1  

1 .783  

1 . 7 4 5  

1 . 7 6 1  

1 .692  

0 .0257  

0 .0409 

0 .0169 

0 . 0 3 2 1  

0 .0295  

0 .0089 

0 . 0 1 2 8  

0 .0364  

0 .0319  

0 .0335 

+l. 0 9 0  

-0.294 

+0.059 

+l. 000 

+1.660 

-0 .112  

- 0 . 0 3 1  

-1 .020 

-1 .880 

+ O .  7 1 5  

0 .0269 +o. 1 1 9  

T h e o r e t i c a l  Mean Squared R Es t ima t ion  E r r o r :  1 . 1 2 0 3  

Actua l  Mean Squared R Es t ima t ion  Error :  1 . 1 2 4 9  
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Table 6.10 (Continued) Monte Carlo Run 10 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

Q 

0.456 

0.512 

0 .330 

0 .360 

0 .997  

0.327 

0 .329 

0 .145 

1 . 4 8 7  

1 . 2 4 9  

0 .619 

n 

Q 

0 . 5 3 1  

0 .695 

0.346 

0.643 

0.628 

0 .214  

0 . 2 7 6  

0 .585 

0 .498  

0 .652 

0.507 

E 6) 
0.485 

0.726 

0.343 

0 .585 

0.552 

0.215 

0.277 

0,648 

0 .594  

0 .618  

0.504 

CYn 
Q 

0 . 0 4 0 4  

0 .0648  

0 .0262 

0 .0505 

0 .0472 

0 .0134 

0 .0196  

0 .0568  

0 . 0 5 1 4  

0 .0538 

0 .0427  

.. 

eh Q 

+l. 1 4 0  

-0 .480 

+O . 115  

+1.150 

+l. 6 1 0  

-0 .075 

- 0 . 0 5 1  

-1.110 

-1 .860 

+ O .  633  

+ O .  1 0 7  

Theoretical Mean Squared Q Estimation Error: . 1 7 7 8  

Actual Mean Squared Q Estimation Error: .1799 
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Table 6 . 1 1  Monte Carlo Run 11: E x p l i c i t  Suboptimal 

’ Solu t ion  

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 0  

Average 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

10.0 

- 

15.697 

16 .060  

15 .729  

16 .027  

15 .363  

1 5 . 4 4 9  

1 5 . 1 5 0  

1 5 . 0 9 9  

1 6 . 2 4 8  

1 5 . 0 3 2  

1 5 . 5 8 5  

15 .543  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

1 5 . 5 4 3  

15 ,543  

0 .087 

0 .087 

0 .087 

0 .087  

0.087 

0 .087 

0.087 

0.087 

0 .087 

0.087 

0 .087 

en R 

+0.378 

+l. 010 

+ O .  6 2 1  

+1.340 

-0.183 

-0 .046 

-0 .820 

-0.172 

+l. 030 

-1.150 

+ 0 . 2 0 1  

Theore t i ca l  Mean Squared R Es t imat ion  Er ro r :  3 0 . 9 3 1  

Actual Mean Squared R Est imat ion Er ro r :  31.366 
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Table 6.11 (Continued) Monte Carlo Run 11 

Sample 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Average 

Q 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

1.0 

7 

h 

Q 

1.167 

1.222 

1.188 

1.241 

1.118 

1.130 

1.062 

1.019 

1.224 

1.034 

1.141 

E 6) 
1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

1.1342 

O h  Q 

0.450 

0.450 

0.450 

0.450 

0.450 

0.450 

0.450 

0.450 

0.450 

0.450 

0.450 

eh Q 

+O. 342 

+1.150 

+O. 414 

+1.070 

-0.400 

-0.206 

-0.870 

-0.986 

+l. 560 

-1.135 

+o. 120 

Theoretical Mean Squared Q Estimation Error: .0256 

Actual Mean Squared Q Estimation Error: .0257 
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The normalized differences between the R and Q estimates 

and their theoretical conditional means were studied using 

a procedure similar to that used in testing the normalized 

estimation errors of the maximum likelihood estimator. For 

each run presented, the mean and variance of these normalized 

differences across the ensemble of ten trials were computed. 

In most cases, the computed mean and variance of the differ- 

ences were within one standard deviation of their expected 

values. From this it can reasonably be concluded that the 

theoretical expressions for the conditional mean and condi- 

tional variance of the estimate about the conditional mean 

are valid. 

From the Monte Carlo runs presented, it can be seen that 

the theoretical results related to the maximum likelihood 

solution and the explicit suboptimal solution agree reasonably 

well with the actual results of the simulations. These 

theoretical results predict the ensemble averages of the esti- 

mation error and mean squared errora Therefore, to study 

the behavior of the various estimators, Monte Carlo simula- 

tions are not necessary. The following are the results of a 

statistical evaluation of the maximum likelihood and explicit 

suboptimal solutions. 

It has been shown that the maximum likelihood estimator 

of the noise covariance parameters is unbiased for any 

values of R and Q that can be encountered. The conditional 

covariance of the estimates about the true values of R and 

Q was shown to be 
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The conditional average of the estimation error is zero and 

is independent of the actual values of R and Q whereas the 

covariance of the estimation error is a strong function of 

R and Q. 

Figure 6.17 shows the normalized variance of the R and 

Q estimator as a function of R for a fixed Q. Figure 6.18 

shows the normalized variance as a function of Q for a fixed 

R. In both examples, the system and measurement schedule is 

that given previously. 

Unlike the maximum likelihood estimator, the conditional 

average of the estimation error for the explicit suboptimal 

estimator is a strong function of the true and a priori values 

of R and Q. Figure 6.19 shows the variation of the condi- 

tional average of R 

estimate R for a fixed R = 1, Q = 0 . 5 ,  and Q = 0.5. It 

can be seen that only when the a priori estimate of R is 

A A 

anddQ as a functinn of +he a priori 
A 

n n 
A 

0' 0 

exactly equal to the true value of R are the conditional 

means of R 

means that if the a priori estimate of R is not equal to the 

A h 

and Qn equal to the true values of R and Q. This n 

true value of R, the explicit suboptimal estimators for R 

and Q are highly biased, with the amount of the bias obtained 

from this graph. 

Figure 6.20 shows the variation in these conditional 

averages as a function of Qo, for a fixed R = 1, Q = 0 . 5 ,  and 

Ro = 1. 

A 

h 

The same general conclusions can be drawn from this 
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graph concerning the bias of the estimator when the a priori 

value of Q is not equal to the true value. 

The maximum likelihood estimator of the noise covariance 

parameters is slightly biased towards the a priori estimates 

of R and Q when the number of measurements is small. How- 

ever, it was shown that as the number of measurements becomes 

large, the effect of this initial condition bias becomes 

arbitrarily small. The same is - not true for the explicit 

suboptimal estimator. If the estimator is biased towards 

the initial estimates, this bias does not necessarily decrease 

as the number of measurements increases, The explicit esti- 

mator is often unable to distinguish between an error in R 

and an error in Q and resultingly the estimates of R and Q 

may be biased no matter how many measurements are taken. 

As was mentioned in Chapter 4 ,  just because the explicit 

suboptimal estimator is highly biased with respect to the 

a priori estimates of R and Q does not mean that no useful 

information can be obtained from them. In fact, the very 

fact that they are so highly biased if the a priori estimates 

are incorrect can be the basis for estimating the true values 

of R and Q. As will be shown, the variance of the estimators 

about the possibly biased values is quite small so that if 

the estimates obtained from the explicit suboptimal estimator 

differ by an appreciable amount from the a priori estimates, 

there is good justification for concluding that the a priori 

estimates are in error. Unfortunately, the explicit subop- 

timal estimators do not provide any information concerning 

how to correct the a priori values to make this discrepency 
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smaller. In any actual situation, the a priori values of R 

and Q would have to be adjusted in a trial and error fashion 

to attempt to make the estimated values of R and Q equal to 

the a priori values. 
A A 

The values of Ro and Qo which make 

to the desired degree of accuracy are 
A A A A 

- and Qn = Q Rn - Ro 0 

then the best estimates for R and Q. 

In Section 4.4, expressions for the conditional mean 

squared estimation error of the estimators for R and Q were 

developed. As was mentioned, part of this error comes from 

possible bias in the estimator and part comes from possible 

variations about this bias. Figure 6 . 2 1  shows the variance 

of the estimator about the biased values as a function of the 

a priori estimates of R for fixed values of R and Q. 

The bias can be found from the previous graphs 6.19 and 6.20. 

c r ~ ( g  ) represents the variance of Q as a function of Q for 

a fixed Rot u^(R ) 

of Ro for a fixed Qo. Similarly, a f i ( R o )  represents the 

variance of R as a function of R for a fixed Q 

represents the variance of R as a function of Q for a fixed 

h h 

and Q o ,  
0 

h h 2 , -  
Q o  0 

A 2 A  
Q o  

A 

represents the variance of Q as a function 
2 , -  h h 

2 &  h h A 

and og(Qo) 
0 

h 

0 
A 

0 
h 

RO 
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. 2  

.1 

. 2  

.1 

Q = 10 

I I -. ._,r___L---- 

1 2 4 10 20  4 0  100 

R 

Fig. 6.17 Variance of M. L. E.  vs R 

i R = 10 

1 2 4 10 20 4 0  10 0 

Q 

Fig. 6.18 Variance of M. L. E. vs Q 
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A 

E (Rn  

A 

1 0  

A 

RO) 

Ro’ 
A 

5 

0 
I . I  I I I I I J 

5 
A 

RO 

1 0  

Fig. 6.19 Conditional Mean of Explicit Suboptimal 
h 

Estimator vs R 
0 

Qo 

A h  

1 -L_- I I I 

0 1 2 3 4 
A 

Fig. 6.20 Conditional Mean of Explicit Suboptimal 
A 

Estimator vs Qo 
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10-1 

Q R 

.1 . 2  . 5  1 2 5 10 

Qo 

Fig. 6.21 Conditional Variance of Explicit 
Suboptimal Estimator about Bias Value 
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6 . 5  Testing of Statistical Hypotheses 

In Chapter 5 various techniques for testing statistical 

hypotheses were described. In this section numerical results 

of a simulation of these hypothesis tests are described. 

As mentioned in Section 5.7, the measurement residual 

- H x  is a good test variable upon which hypothesis 
A 

k k klk-1 
tests can be conducted. If the values of R and Q that are 

used to compute the state estimate ~ ~ l ~ - ~  are equal to the 

true values, then the measurement residual is a zero mean 

h 

normally distributed random variable with covariance 

A 

where Az = z - H x k k k klk-1 

However, if the measurement and driving noises are not 

zero mean normal variables with known covariances, then the 

measurement residuals may not be zero mean with covariance 

as given above. 

Two hypothesis tests were devised to test hypotheses on 

the values of R and Q used to compute the measurement resi- 

dual gains and to test the hypothesis concerning the unbiased- 

ness of the measurement and driving noises. The first of 

these two tests will now be described. 
h A 

Suppose Ro and Qo are the a priori estimates of the 

measurement and driving noise covariance matrices and a 

maximum likelihood estimate of the state is computed as a 

function of the measurements and these a priori values of 
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A A 

Ro and Qo. 

computing t h e  s t a t e  est imate  and i t s  "computed" cova r i ance  

I n  S e c t i o n  2 . 3 ,  t h e  r e c u r s i v e  e q u a t i o n s  for  

ma t r ix  are g iven .  I t  w a s  shown t h a t  on ly  under t h e  n u l l  

hypo thes i s  Ro = R and Qo = Q does  t h e  computed cova r i ance  

m a t r i x  a c c u r a t e l y  r e p r e s e n t  t h e  cova r i ance  of t h e  e s t i m a t i o n  

A A 

e r r o r .  I t  w a s  a l s o  shown t h a t  t h e  measurement r e s i d u a l  has  

a ze ro  mean even under d e p a r t u r e s  from t h e  n u l l  h y p o t h e s i s ,  

b u t  on ly  i f  Ro = R and Qo = Q are t h e  r e s i d u a l s  a t  a t i m e  k 

independent  of t h e  r e s i d u a l s  a t  a t i m e  j ,  f o r  k # j. There- 

A A 

* /\* 
f o r e ,  w i th  Azk = zk - Hk ~ ~ l ~ - ~ ,  

* 
€ ( A z k )  = 0 

* T 
E (Azk AzLT) = R + HkPkik-lHk 

where t h e  above c o n d i t i o n a l  expec ted  v a l u e s  are cond i t ioned  

upon t h e  f a c t  t h a t  Ro and Qo are  used t o  compute t h e  weight ing  

matrices f o r  t h e  measurements, whereas t h e  t r u e  v a l u e s  are 

A A 

R and Q -  

i a n c e  and i s  n o t  equa l  t o  t h e  "computed" e r r o r  cova r i ance  

Pklk-1 i s  t h e  " t r u e "  s t a t e  e s t i m a t i o n  e r r o r  covar- 

ma t r ix  excep t  under t h e  n u l l  hypo thes i s .  

Under t h e  n u l l  hypo thes i s ,  

f o r  k f j 
* *T 

& ( A z k  Az ) = 0 
j 
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Consider  t h e  v a r i a b l e  

where 

Then under t h e  ~- n u l l  h y p o t h e s i s ,  tn i s  a z e r o  mean normal 

random v a r i a b l e  w i t h  cova r i ance  

.- 

n n  1 x d F  &(Azk * A z t T ) I / F  3 
j=1 k = l  

c o v ( t n )  = ~ ( t  n n  t T ) = 

= I  

Therefore, tn i s  a z e r o  mean normal v a r i a b l e  w i t h  cova r i ance  

I ,  S ince  each component of t h e  v e c t o r  tn i s  s t a t i s t i c a l l y  

independent  of any other  component, an independent  t e s t  of 

each component i s  p o s s i b l e .  Using t h e  procedures  of S e c t i o n  

5 . 4  concerning tests on t h e  mean, a c r i t i c a l  r e g i o n  (-t 

can be d e f i n e d  such t h a t  under t h e  n u l l  h y p o t h e s i s ,  t h e  

p r o b a b i l i t y  of t h e  t es t  var iable  tn be ing  i n  t h i s  r e g i o n  i s  

1 - a, w h e r e  a i s  t h e  l e v e l  of s i g n i f i c a n c e  of t h e  t es t .  

Using t h e  procedures  o u t l i n e d  i n  S e c t i o n  5 . 4 ,  t h e  t e s t  

v a r i a b l e  tn can be used t o  tes t  t h e  hypo thes i s  t h a t  t h e  

r e s i d u a l  i s  z e r o  mean w i t h  cova r i ance  I. A f a i l u r e  i n  t h i s  

test  can be caused by a bias i n  t h e  measurement o r  d r i v i n g  

a' 
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noises or incorrect values 

which is used to normalize 

Now consider the test 

* 
of R and Q used to compute Bk 

the residuals Azk. 

variable 

* 

k = l  

Under the null - hypothesis ~ 

k = l  

= n I  

* 
Since Azk are normally distributed random variables, the 

diagonal elements of x2 can be shown to be independent chi- 
square distributed varialbes under the null hypothesis, 

with n-1 degrees of freedom. Using the procedures outlined 

in Section 5.5 concerning tests on the variance, a critical 

region for each diagonal element of xn can be defined such 
that under the null hypothesis the probability that the test 

n 

2 

variable lies within this critical region is 1 - a, where c1 

is the level of significance of the test. The test variable 

’ can then be used to test the hypothesis that the residuals Xn 
are zero mean normally distributed random variables with 

covariance B 

bias in the measurement or driving noises or incorrect values 

of R and Q used to compute Bk. 

* 
A failure of this test can be caused by a k’ 

* 

Table 6.12 shows the results of such tests of hypotheses 
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on the values of R and Q. Shown are the true values of R 

and Q along with the a priori values of R and Q which were 

used to compute the proper test variables. The two columns, 

M-fail and S-fail, indicate whether or not the mean and 

variance test variables failed the appropriate test on the 

5, 10, and 20 percent levels. A "1" indicates a test 

failure and a " 0 "  indicates a passing test. 

As can be seen, the mean test was not highly sensitive 

to departures from the null hypothesis on the values of R 

and Q. Only in extreme cases did the mean test fail, and 

then only on the 10 and 20 percent levels. 

However, as would be desired, the variance test was 

very sensitive to moderate departures from the null hypo- 

thesis, thus indicating a powerful test of the hypothesis. 

Another series of hypothesis tests was conducted to see 

if the above hypothesis tests could detect a bias in either 

the measurement or driving noises. In Chapter 2, it was 

shown that maximum likelihood state estimation can be adverse- 

ly affected if it is assumed that the measurement and 

driving noises are zero mean, when in fact they are not zero 

mean. For this test, it was assumed that the measurement and 

driving noise covariance matrices were precisely known, but 

there was a bias in either of the two noises. In other words, 

hypotheses on the means of the measurement and driving noises 

are being tested. The results of these tests are shown in 

Table 6.13. 

is the hypothesized value of the measurement noise bias, 

is the true driving noise bias and Bw is the hypothesized 

A 

Bv is the actual measurement noise bias and Bv 

Bw 
A 
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value of the driving noise bias. The system and measurement 

schedule are those given previously. 

The variances of the measurement and driving noises 

about any possible biases were 10 and 1 respectively. It 

would be expected that only when the biases are comparable 

to the standard deviation of the noises would the tests 

indicate a failure. This was indeed the case. As can be 

seen, the mean test was somewhat more powerful in detecting 

departures from the hypothesis about the noise biases, but 

because of the non-independence of the tests, the variance 

test also indicated failure if the difference between the 

true bias and the hypothesized bias was sufficiently large. 

These hypothesis test runs are not meant to be all 

inclusive but rather indicate that with only a moderate 

expenditure of computation, powerful tests on hypotheses 

concerning the unbiasedness and covariance of the measurement 

and driving noises can be implemented. The tests do not 

tell why the particular test failed, but they do indicate 

that one or more of the underlying assumptions about the 

system or measurements is in error. The tests might also be 

used to test hypotheses concerning the values of certain 

elements of the transition matrices, measurement matrices H 

or any other parameter which is used to describe the system. 

These runs are merely meant to test the feasibility of using 

hypothesis tests in real time to indicate a failure of certain 

assumptions about the environment under which the estimation 

process is taking place. 

k' 
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Table 6.12 Hypothesis Test Run 1: R and Q Test 

Table 6.13 Hypothesis Test Run 2: Noise Bias Test 

h h 

0 

5 

10 

2 0  

100 

10 

10 

10 

10 

10 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0.1 

0 . 5  

1 

2 

10 

M-fail S-fail I 
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Chapter 7 

CONCLUSION 

7.1 Summary of _ _  Results 

The technique of maximum likelihood estimation has been 

shown to be effective in estimating the state and statistics 

of the measurement and driving noises in a linear dynamical 

system observed by linear noisy measurements. Theoretical 

and empirical results indicate that the estimator of the noise 

covariance parameters is asymptotically unique, unbiased, 

consistent, and efficient, However, the solution of the 

likelihood equations for the state and noise statistics 

generally requires considerably more computation than that 

normally involved in estimating the state of the system when 

the noise statistics are presumed known. For this reason 

the optimal procedures requiring an iterative solution of 

the likelihood equations will probably find their greatest 

application in data reduction rather than real time estimation 

problems. 

In many cases, a linearized solution of the likelihood 

equations is quite adequate and can be used if a real time 

solution of the estimation problem is required. Of the sub- 

optimal techniques studied, the linearized maximum likelihood 

solution is the only generally applicable technique that is 

effective for the real time estimation of the state and noise 

covariance parameters. The other techniques for estimating 

2 9 4  



the noise covariance parameters are either biased with 

respect to the initial estimates of the parameters or result 

in possibly non-unique solutions. 

Any technique for the estimation of the noise covariance 

parameters requires some additional computation. Therefore, 

before any estimation of these quantities is undertaken, 

there should be some indication that the a priori values are 

sufficiently in error to substantially reduce the effective- 

ness of the state estimation procedure. It has been shown 

that there are several techniques for testing certain hypo- 

theses concerning the values of the noise statistics which 

allow a decision to be made concerning the correctness of 

the a priori estimates of these parameters. 

7.2 - Suggestions ~~ ~~ for Future Stw;,cly 

In Chapters 3 and 4 techniques for the estimation of 

noise covariance parameters were developed under the assump- 

tions that the measurement and driving noises were independent 

zero mean normally distributed random variables with diagonal, 

time invariant covariance matrices. These assumptions were 

made to simplify the estimation problem while not overly 

restricting the applicability of the solution, However, the 

techniques discussed can be extended to include cases when 

these assumptions are not valid. A similar structure of the 

problem must be retained so that definitive results can be 

obtained. That is, the dynamics of the state are still 

described by a linear differential or difference equation 

with normally distributed driving noise and the measurements 
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are linear functions of the state with additive normally 

distributed measurement noise. In this section, the follow- 

ing cases will be briefly studied: 

1) non-diagonal noise covariance matrices 

2 )  time varying noise covariance matrices 

3 )  estimation of more general parameters, such as 

elements of the state transition matrix 

Possible extensions of the explicit suboptimal estimator 

will be discussed first. 

The extension of the explicit suboptimal estimator to 

the case of non-diagonal noise covariance matrices is straight- 

forward. In the expressions of Chapter 4 for estimators of 

the diagonal elements Rij and ijj, all that need be done is 

change the indices to R 

the indices appearing on the right hand side of these equa- 

tions. The expressions for the conditional and unconditional 

means of the estimators can easily be modified to include 

this generalization. However, extension of the expressions 

for the conditional and unconditional mean squared error of 

the estimators would be exceedingly difficult. 

A .  

n 
* jk 
n and iik with appropriate changes in 

The case of time varying noise covariance parameters is 

considerably more difficult to treat. If it is assumed that 

R and Q vary slowly with time compared to the rate of data 

accumulation, then the total estimation time can be broken 

into segments and an independent estimate of R and Q obtained 

from the data gathered in each time segment. Alternatively, 
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a different weighting of the measurement data could be 

proposed such that data taken in the distant past is essen- 

tially not used in the estimate of the covariance parameters. 

A third procedure could be used to model the noise covariance 

parameters in a way described by Smith and outlined in 

Chapter 4 .  In that case, the noise covariance parameters are 

assumed to be of the form 

where R is some nominal value of the measurement noise nomn 
covariance at time n and k is an unknown time invariant 

precision factor associated with R . A similar equation 

could be used for the driving noise covariance matrices. 

The estimation.problem is then reduced to estimating certain 

constants associated with each unknown noise covariance 

parameter. Any m o r e  general time variation of the noise 

covariance parameters than those outlined above cannot be 

adequately treated using the explicit suboptimal estimator. 

n 

There is no real possibility that the explicit estimator 

can be used to estimate more general parameters of the system 

or measurement. The estimation equations were derived with 

the particular goal of estimating the measurement and driving 

noise covariance matrices and accordingly cannot be modified 

to include the estimation of other system parameters. 

The technique of maximum likelihood offers a procedure 

and formalism within which any of the extensions mentioned 

above can be handled. The resulting equations may be so 
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complicated that a solution may not be practical, but at 

least the equations for an optimal solution of the problem 

can be derived. 

If the measurement and driving noise covariance matrices 

are not assumed to be diagonal, then additional likelihood 

equations must be derived for estimating these off diagonal 

elements. This can be done quite easily. In addition to the 

likelihood equations for the state and diagonal elements of 

R and Q, one additional equation is needed for each off diag- 

onal element of R and Q that is to be estimated. This 

equation has the form 

with a similar equation for the off diagonal elements of Q. 

Ln(~,Q,xn,Zn) is the logarithm of the appropriate likelihood 

function as derived in Chapter 3. The choice of likelihood 

functions is determined by whether a priori information about 

the noise covariance parameters is to be utilized. 

As was the case of the explicit suboptimal estimator, 

the case of time varying noise covariance parameters is more 

difficult to treat. Again if it is assumed that the time 

variation is slow, then the total estimation time can be 

divided into segments and an independent estimate of the noise 

covariance parameters obtained assuming that R and Q are 
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essentially constant over this time segment. Of course, the 

time segment over which R and Q are constant must be long 

enough to allow sufficient information to be gathered to 

obtain a reasonably good estimate of R and Q. 

Alternatively, if the noise covariance parameters are 

assumed to change with time in a deterministic manner as 

proposed by Smith, the technique of maximum likelihood can 

easily be applied to estimate the value of the unknown 

precision factors kJ , with a separate precision factor 
associated with each unknown element of R and Q. In this 

case, the likelihood function can be thought to be a function 

of the parameters kj rather than R 

equation of the following form must be solved. 

j and Qn. For each k , an n 

k+k 

where here it has been assumed that there are m such preci- 

sion factors. The solution of this equation can be obtained 

in a manner entirely analogous to the solution for the time 

invariant covariance parameters discussed in Chapter 3 .  

There is also the likelihood equation associated with the 

state xn which must be solved simultaneously with the like- 

lihood equations for the parameters k j 

Much more work needs to be done in the area of maximum 

likelihood estimation when the time variation of R and Q is 

more complicated than the cases given above. It is felt 
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that there is much promise of obtaining an optimal solution 

to the problem. Such a solution might proceed along the 

following lines. 

Let 5, represent the vector of diagonal elements of the 

noise covariance matrices at time n. 

Let (n-1 be the vector of diagonal elements of these matrices 

at time n-1, and let the relationship between 5, and cn-l be 
given by 

(7.2.1) 

where Y(n,n-1) is the "noise covariance parameter transition 

matrix" and un is the ''noise covariance parameter driving 

noise." Since 5 represents a vector of noise variances, 

every element of 5 must be positive. Therefore, the distri- 

bution of the noise un must be chosen so that for any Y(n,n-1) 

and En-,, the elements of 5 

this would require that the distribution of un be a function 

of Y(n,n-1) and <n-l. However, these problems can be 

avoided if it is assumed that the elements of u are chosen 

from a distribution that is independent of Y(n,n-1) and 5 

and only allows positive values for the elements of u . Such 

a distribution might be the Gamma distribution used in Chap- 

ter 3 .  

as increase from time n-1 to time n. 

n 

n 

are all positive. In general n 

n 

n-1 

n 

Note that this choice allows <, to decrease as well 

If on the average En 
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is to be equal to 5,,,, then the parameters Y(n,n-1) and 

the distribution of un should be chosen so that 

where En is the mean of the un distribution and rn is the 
average value of 5,. If the noise un on a given trial is 

less than its mean, then 5, will be less than its mean value. 

It might also be reasonably assumed that Y(n,n-l) is 

a diagonal matrix so that if the elements of un and 

mutually independent, the elements of 5, will also be 

independent. 

are 

If Y'(n,n-1) is a zero rhatrix, then 5, is completely 

is a 'n independent of 5, - 1, whereas if un is not present, 
deterministic function of All other cases between 

these two extremes can be handled by appropriate choice of 

Y(n,n-l) and the parameters of the distribution of un. It 

can be shown that if 5, and u have a Gamma distribution n 
and are mutually independent, then 5, has a Gamma distribution. 

- 

It is desired to estimate the values of 5 and x given 

The appropriate likelihood function to 
n n 

the measurements Zn. 

maximize would be 

where f(cn,x 12 ) is the conditional probability density 

function of 5, and xn given the measurements Zn. 
n n  

The choice 
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of the proper likelihood function is not as obvious in the 

case of time varying noise statistics as was the case when 

the statistics were assumed to be time invariant. Two other 

possibilities will be discussed subsequently. 

From Bayes' rule, 

(7.2.3) 

m 

Then the logarithm of the likelihood function is 

The gradient of Ln with respect to the parameters to be 

estimated is then 

(7.2.6) 
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T T T  
n where a = (xn ,  5,). 

The d e n s i t y  f u n c t i o n  f ( zn lZn- l fxn , cn )  i s  e a s i l y  found. 

The rea l  d i f f i c u l t y  comes i n  f i n d i n g  t h e  d e n s i t y  f u n c t i o n  

f ( c , , ~ ~ l Z , - ~ ) .  

p r e v i o u s l y  o b t a i n e d  d e n s i t y  f u n c t i o n s .  I f  it i s  assumed t h a t  

i n i t i a l l y  5, and xn are independent ,  t hen  

I t  can  be o b t a i n e d ,  a t  l e a s t  i n  t h e o r y ,  from 

w h e r e  f ( x  ) i s  t h e  a p r i o r i  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  of 

t h e  i n i t i a l  s t a t e  and f (5 , )  i s  t h e  a p r i o r i  p r o b a b i l i t y  dens i -  

t y  of t h e  i n i t i a l  v a l u e  of to, bo th  of which are presumed t o  

be known. Then b e f o r e  t h e  f i r s t  measurement, 

0 

Assuming f ( x  ) i s  a normal d e n s i t y  f u n c t i o n  w i t h  mean x 

and cova r i ance  P 

0 010 

i t  i s  easy  t o  show t h a t  
010' 

(7 .2.8)  

A A 

where 

3 0 3  
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Assuming the model for 5, previously given, f(<,) is a 

Gamma probability density function with known parameters. 

Then using (7.2.3) with (7.2.4), (7.2.7), and (7.2.81, the 

density function f(<,,xllZ,) can be found. 

evaluation of this density function will be very complicated 

In most cases, 

but it can be performed in theory. 

Once the necessary density functions in (7 .2.5)  are 

found, then the estimates of 6, and x can be found by finding n 
the zero points of the likelihood equations (7.2.6). Some 

iterative procedure will be needed for the solution of these 

equations. 

Assuming that a solution of the likelihood equations 

can be found, much work needs to be done to determine if such 

a solution is unique and if it is, what are its asymptotic 

properties. 

case when the noise covariance matrices were assumed to be 

time invariant. If the noise covariance parameters change 

rapidly with time and are not sufficiently correlated with 

past values of the noise parameters, then there may not be 

sufficient information in the measurements to uniquely define 

the estimates. In such a situation, the maximum likelihood 

estimator may be required to estimate the value of the noise 

parameters essentially on the information contained in a 

single measurement. If the measurement is of small dimension 

compared with the number of parameters being estimated, there 

The situation is much more complicated than the 
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may be insufficient information in the measurement to estimate 

the noise parameters. This is not a shortcoming of this 

particular type of estimation, but rather a fundamental problem 

of trying to estimate the value of a quantity with insuffi- 

cient information. A similar problem was encountered in 

Chapter 2 when the state of the system was being estimated 

without prior information. Until sufficient information was 

gathered, a unique state estimate could not be defined. 

Assuming that a unique solution to the problem exists, 

finding its asymptotic properties will be difficult. How- 

ever, it should not be expected that the estimator for 5 is 

a consistent estimator when there is "noise" driving the 

vector of noise covariance parameters. This is entirely 

analogous to the fact that a Kalman estimator for the state 

is not consistent when there is noise driving the state, 

or in other words, the covariance of the estimation error 

does not go to zero as the number of measurements goes to 

infinity. Therefore, it can be anticipated that the maximum 

likelihood estimator of the state which uses estimates of 5 n 
to compute the appropriate filter gains will not converge to 

the estimates that would be obtained if the noise covariance 

parameters were known precisely. However, if the noise 

covariance estimator operates properly, this difference may 

be small. 

n 

As was mentioned previously, the likelihood function 

given above is not the only possibility that might be 

a-nsidered. Another solution to the problem might be found 
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by simultaneously estimating the state xn and the values of 

the noise covariances at all times up to and including time 

n. In such a situation, a likelihood function of the form 

might be chosen. Define 

Then by Bayes' rule 

f(xn]Rn,Z ) is the probability density function of the state 

given the measurements Z and the values of the noise covari- 

ance parameters at all times. From Chapter 2 ,  

n 

n 

A T -1 A 1 e --(xn-x 2 n 1 n) 'n 1 n (Xn-xn 1 n) 
(7.2.11) 

A 

where x is a function of Z and Rn, and P is a function 
n b  n nln 

of R n .  

By application of Bayes' rule, 
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Repeating the above procedure, it is easy to show that 

f(5 ) is the a priori probability density function of the 

initial value of the noise covariance parameters. It is easy 

to show that 

0 

where 

.. 

is the maximum likelihood estimate of x after i-1 i X i 1 i-1 
measurements using the true values of Ri to compute the proper 

filter gains, and Pili-l is the conditional covariance of x 

about xi I i-l. 
i 

h 

From the model of S i ,  it can be seen that f(5ilQi-l,Zi-l) 

is a Gamma probability density function with conditional mean 

where ui is the mean of the distribution of noise covariance 
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parameter driving noise. The conditional covariance of the 

distribution is 

In obtaining these expressions, use was made of the fact 

i-1 that ui is independent of Z 

not be evaluated since it is not a function of x 

and Ri - 1. f(zilZi-l) need 

or Rn. 

The logarithm of the likelihood function (7 .2 .9 )  is 
n 

and the gradient of Ln with respect to the parameters to be 

estimated is 

(7 .2 .14 )  

T T T  where now an = The maximum likelihood estimate of 

a is the value of a which makes all components of (7 .2 .14 )  

(xn, an). 

n n 
zero. From an examination of ( 7 . 2 . 1 4 ) ,  it can be seen that 

the estimate of the state xn is just the maximum likelihood 

state estimate which uses the estimates of R to compute the 

proper filter gains. The estimates of Rn are found from the 

solution of the likelihood equations associated with the 

n 

gradient of the likelihood function with respect to R n . 
It should be noted that finding the necessary density 

functions in this likelihood equation is considerably easier 
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than finding the density functions in the previous likelihood 

equations ( 7 . 2 . 6 ) .  However, it should also be noted that the 

number of likelihood equations that must be simultaneously 

solved is much larger than in the previous case. In addition 

to the likelihood equation associated with the state, there 

is one likelihood equation associated with the value of ti at 
- every measurement time. Thus as n becomes large, the number 

of likelihood equations also becomes large. 

A third possibility for likelihood function would be 

1 (Xn, zn) (7 .2 .15)  

In this case, only the state is to be estimated, not the 

values of the noise covariance parameters. However, it will 

be shown that finding the above probability density function 

is even more difficult than in the previous two cases. From 

Bayes’ rule, 

1 1  -03 

W 
r r  

-00 

Then the gradient of the logarithm of the likelihood function 

(7 .2 .15)  is 
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Evaluating this expression in a realistic situation would 

be very complicated and finding the zero points of the equa- 

tion would be even more involved. Thus the number of 

equations that must be solved has been reduced over that of 

the two previous approaches, but the complexity of the 

equations is considerably increased. 

In general, the state estimates obtained from the 

solution of these three different likelihood functions will 

be different. Which estimate is "better" depends upon what 

information is desired from the measurement information. 

Solution of the first problem will result in estimates of 

the current state and the current value of the noise covari- 

ance parameters. The solution of the second problem will 

result in estimates of the current state and the values of 

the noise covariances at all times. The solution of the third 

problem will result only in the estimate of the state, with 

no information provided about the value of the noise statistics. 

The tradeoff between the number of equations to be solved 

and their complexity seems to be a general feature of maximum 

likelihood estimation. As the number of parameters to be 

estimated increases, there are more equations that must be 

simultaneously solved, but it is usually easier to find the 

necessary probability density functions. 

Maximum likelihood estimation can be used to estimate 

more general parameters of the system and measurement than 
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the statistics of the noises. These problems can be handled 

within the framework of the maximum likelihood estimators 

already developed. The likelihood functions of Chapter 3 

were written as functions of the state x the measurements 

'n 
function is a function of all parameters of the system, 

namely the state transition matrix, forcing function matrix, 

and the observation matrix. The dependency of the likeli- 

hood function on these additional parameters was not indicated 

because it was previously assumed that the parameters were 

known precisely. Now it is assumed that some of these para- 

meters are not known precisely a priori, but rather knowledge 

of them is described by some a priori probability density 

function in a fashion similar to that used in describing the 

uncertainty in R and Q. 

n' 
and the parameters R and Q. In fact, the likelihood 

Let f3 represent the vector of any additional parameters 

of the problem that are to be estimated. For simplicity it 

is assumed that B is time invariant. The likelihood function 

appropriate for this problem is 

where f(R,Q,xn,BIZn) is the joint conditional probability 

density function of the parameters R,Q,xn, and B given the 

measurements Zn. From Bayes' rule 

(7.2.17) 
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Then the logarithm of the likelihood function is 

Ln(R,Q,XntB,Zn) = In f(RtQiXnrBlzn) 

= In f(x IZ,,R,Q,B) + In f(R,Q,BIZn) 
n 

Then 

(7 .2.18)  

( 7 . 2 . 1 9 )  

But the zeros of the likelihood equations ( 7 . 2 . 1 9 )  can be 

shown to occur when 

This says that the estimate of x is just the maximum likeli- 

hood estimator of the state that uses estimates of R, Q, and 

f3 to compute the proper filter gains. Estimates of R and Q 

are found in the same manner as in Chapter 3. Estimates of 

6 are found from the solution of the additional likelihood 

n 

equations 

R-tR ,n 
Q'gn 
f3-t Bn 

The likelihood equations for the state x the noise covari- 

ance parameters R and Q, and the additional parameters 13 
n' 
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must be solved simultaneously, this generally requiring an 

iterative solution. 

Thus it can be seen that more general parameters can be 

estimated in the same way as the noise covariance parameters, 

except that for each additional parameter to be estimated, 

an additional likelihood equation must be solved. 

As in the case of time varying noise statistics, much 

work needs to be done concerning the asymptotic properties 

and possible convergence problems associated with the esti- 

mation of these additional parameters. 

One final word should be said about the application of 

maximum likelihood estimators of the state and noise statis- 

tics in problems when there may be errors in the dynamical 

model of the state. Jazwinski has shown that the effects of 

these modeling errors can often be characterized as an addi- 

tional noise driving the state, where the statistics of this 

noise are unknown. If a maximum likelihood estimator of the 

mean and covariance of the "effective driving noise" is 

employed, there is good reason to believe that the perfor- 

mance of the state estimator can be considerably improved. 

In such cases, the estimates of the statistics of the noise 

may have little physical significance, since there is actually 

no "modeling error noise'' driving the state. However, if the 

effect of the modeling errors can be accurately represented 

as such a noise, then estimating the statistics of this noise 

can improve the state estimation and minimize possible diver- 

gence problems within the filter. 
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Appendix A 

MATRIX AND VF,CTOR OPERATIONS 

A.l The Generalized Inverse _ _  

The generalized inverse is an important concept in 

matrix theory because it provides an extension of the concept 

of an inverse which applies to all matrices. Deutsch, Rao, 

and Rust discuss the theory and application of the generalized 

inverse in such problem areas as numerical analysis and 

least squares estimation. This appendix closely follows the 

work of Deutsch. 

The generalized inverse of an m x n matrix A of rank r 

is a n x m matrix A# of rank r such that 

A A  # A = A  (A.l.1) 

# I f  A = 0 ,  define 0' = OT. 

because they are equal to their squares. 

Both A A and A A# are idempotent 

# #  # (A#A)~ = A A A A = A A 

# # (A A#)2 = A A A A# = A A 

I f  A is of rank r > 0, then it has a rank factorization 

of the form 

A = B C  
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I 
where B is a m x r matrix and C is an r x n matrix with the 

rank of both B and C equal to r. 

The pseudoinverse of a matrix, often called the Moore- 

Penrose generalized inverse, is defined as 

with T o+ = 0 

(A.1.2) 

A pseudoinverse is a generalized inverse because (A.1.2) can 

be shown to satisfy ( A . l . l ) .  If A is nonsingular, then 
A + = A # = A  -1 . 

There are several advantages for employing the pseudo- 

inverse rather than the more inclusive generalized inverse. 

These stem from the following properties: 

1) The pseudoinverse of a pseudoinverse yields the 
+ +  original matrix. That is (A ) = A 

+ + 
2 )  ( A  A ) and (A A )  are symmetric matrices. 

3 )  The pseudoinverse of a matrix is unique. 

Rust discusses an algorithm suitable for digital computer 

operation for finding the generalized inverse of a matrix. 

However, in certain special cases, the solution can be obtained 

directly. 

If (ATA) is of full rank then 

A+ 
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T If (A A ) i s  of f u l l  rank  t h e n  

T T -1 A + = A  ( A A )  

A.2 The Mat r ix  I n v e r s i o n  Lemma 
~~ 

I f  A i s  a n x n nons ingu la r  m a t r i x ,  A i s  a n x m 1 2 
m a t r i x ,  A3 is  a m x m nons ingu la r  m a t r i x ,  and A4 i s  a 

m x n m a t r i x ,  t hen  

( A ~  + A ~ A ~ A ~ )  -1 = A~ -1 - ( A ~ A ~  -1 + A;’) A ~ A ; ~  

The proof i s  by d i r e c t  s u b s t i t u t i o n .  

A.3 Matr ix  and Vector D e r i v a t i v e s  

C e r t a i n  m a t r i x  and v e c t o r  i d e n t i t i e s  are needed i n  t h e  

main t e x t .  The purpose of t h i s  appendix i s  t o  d e r i v e  t h e  

g e n e r a l  r e s u l t s  a p p l i e d  t h e r e .  The fo l lowing  n o t a t i o n  i s  used 

here : 

Y 

-1 Y 

PI 
U 

a n x 1 column v e c t o r  

a s c a l a r  f u n c t i o n  of t h e  v e c t o r  x and p o s s i b l y  

o t h e r  parameters  

a m x m m a t r i x  

t h e  i n v e r s e  of Y 

t h e  de t e rminan t  of Y 

t h e  c o f a c t o r  m a t r i x  of Y such t h a t  Y - l  = UT/lyl , 
where UT i s  t h e  t r a n s p o s e  of U. 
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a 1 x n r o w  v e c t o r  

a n x n symmetric 

m a t r i x  

Proof :  By t h e  c o f a c t o r  expansion of t h e  de t e rminan t  of Y ,  

m 

Then 

i + k  
Uik = (-1) M i k  By d e f i n i t i o n  

where Mik i s  t h e  minor of Yik which i s  f m n d  by e v a l u a t i n g  

t h e  de te rminant  of t h e  m a t r i x  ob ta ined  by d e l e t i n g  t h e  r o w  

and column c o n t a i n i n g  t h e  element Yik. 

d e f i n i t i o n ,  Uik i s  n o t  a f u n c t i o n  of Yik and 

Thus from t h i s  

- -  - 0  a U i k  
a Y i k  
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m _ _ _  m 

where 6 i j  i s  t h e  Kronecker d e l t a  de f ined  by 

= o  'i j 

= 1  

Then 

O r  

2 .  By e n t i r e l y  analogous procedures  i t  can be shown t h a t  

where B i s  any mat r ix  t h a t  i s  n o t  a f u n c t i o n  of Y .  

3. L e t  Y be a func t ion  of a ma t r ix  Z .  Then 

1 -1 ay = T r ( Y  - 
j R  

a z  

where T r (  ) i s  t h e  t race of t h e  enc losed  m a t r i x .  
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4 .  BY analogous procedures it can be shown that 

1 a Y+B = Tr [(Y+B) -1 a(Y+B) a z j R  

where both Y and B may be functions of Z. 

5 .  Let a and b be any constant m x 1 column vectors. Then 

6 .  From the fact that Y Y-l = I, it can be shown that 

Theref ore 

I 7. 

If Y = A Z B + C, where A ,  B, and C are constant matrices, 

T -1 
= -  a Y A- y-ib T -1 az a (a Y b) 

ja az az 
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Or 

- - - 1 (ATY-lTa) - "ik (B Y-lb)k i az,, 

- - - 1 (ATY-lTa)i 6ij &kt (B Y-lb), 
i k  
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Appendix B 

EVALUATION OF EXPLICIT ESTIMATOR MEAN SQUARED ERROR 

In Section 4 . 4  expressions for explicit estimators of 

the diagonal elements of the measurement and driving noise 

covariance matrices were developed. Also evaluated were the 

conditional and unconditional means of the estimates and the 

conditional mean of the squared estimation error. In this 

appendix the unconditional mean of the squared estimation 

error is obtained. 

From (4.4.16) the conditional mean of the squared R 

estimation error is 

where 

The 

is then 

n 

n n  = " Z  AFk 
k= 1 

* * *T T AFn = Hk(Pklk + Pklk)HE - HkAkR - RAk Hk (B.  4 )  

unconditional mean of the squared estimation error 
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Define 

T 
where h: is the jth column of H n’ 

HT)jj)’] = (R jj ) + E[(AFjj)2] n (B.6) * 
Then E[ ( (R + AFn - HnPnln n 

where 

It is assumed that the a priori values of R and Q used 

to compute all starred quantities are equal to the means of 

their respective distributions. Or 

- A 
s 

A 

Ro = R and Qo = Q 

Then using the results of Section 2.3 it can be shown that 

and a l s o  

Define 

Then 

E(AFn) = 0 
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where 
- 

a diagonal matrix 
jk 

= E[(Rjj - Rjj)2]6jk 
R 

E[(aj 

(2.3.44) it can be shown that 

12 1  and di must now be computed. Using (2.3.43) and 
nln 

where 
A * 

Dk = (I - AkHk) 

- - A Dn @(n,n-l)Dn-l @ (n-l,n-2). . .Dk+l @ ( k + l ,  k) ‘nlk 

A = I  
k l k  

with x 
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n 
jT hJ = jT P A T  hj + hiTXnrkAkRAk * *T Xnlk T hj 

Then hn 'nln n hn 'nlo o l o  nlo n 
k=l 

n 
D I' QrTAT hj hiTAn[k k k k nlk n + 

k = l  

B u t  

*T T ,T)!7j 
(R) " (Ak 'nlk n 

jT A*RA*TAT hj = (HnXnlk A*) js so hn 'nlk k k nlk n 

Similarly 

T T T ,T)jk 2 1 (Q)" j T  T T T  ' 

hn 'n I kDkrkQrkDk'n I khi = ( ('kDk'n I k n 

Define 

Then 

a y x y matrix 
k= 1 

e nlo j = hn jT 'nJoPojo AT njo hj n a scalar 

a TI x 1 vector 
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Squaring ( B . 8 ) ,  performing the unconditional expected value, 
* ‘  

then subtracting the square of a 

a diagonal matrix ij 2 where = E[(QJj - 16jk 
jk 

Q 

In obtaining this expression it was assumed that R and Q are 

independent random variables and that e j is not a function 

of R or Q. 
4 0  

By a similar procedure it is easy to show that 

*i 

Define 

Then (B.7) becomes 

It can also be shown that 
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So, after algebraic manipulation, (B.6) becomes 

where 

+ Ln 

= C' + C rill rill I 

1 

Evaluation of E[(FAJ)"] is considerably more difficult 

It than evaluation of E (GAj) but uses a similar procedure. 

can be seen that 

After a slight rearranging of terms and performing the above 

sum to n instead of n-1, it can be 

1 

seen that 

(B. 10) k= 1 

3 2 6  



r 

After algebraic manipulation, 

[dj n - 

Following the same procedure as in finding E[ (Ad’)*] n , 

Define 
n 

k= 1 

Then after algebraic manipulation, (B.lO) becomes 

can be computed through a recursive rela- rill C“ and L 
n I1 

tionship. From the definition of Cil l ,  
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Define 

Then 

But 

and 

so 

k = l  

(B.12) 

n- 1 

k=l 

mRu Therefore, (an) can be computed recursively and C;/lfound 

from (B.12). L 

Define 

can be computed in a similar fashion. rill 

1 1  

k=l 

Then 
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and (Bn) mRu - - ( D ~  @(n,n-l)) ms (eT (n,n-l)Dn) T tu ('n-1 

mR T T Ru + (Dnrn) (rnDn) 

From (4 .4.21)  the conditional mean of the squared Q 

estimation error is 

E[(Q:j - $jp1 = Jjj n + (Mn jj)2 (B.  1 4 )  

* jj)2 (B. 1 5 )  Jnml + 7 ( ( Q  + AMn - Tn) 2 
n 

J~~ . .  = (9) 2 jj 
where n 

* 
'n 

# 
rn is the generalized inverse of rn, which in 

most cases is equal to 

* * 
+ P  n nln - 'n 

- 
+ 'n 

*-1 * p*-l - 
n nln-1 'nln-1 'nln-1 'nln-1 'n 

* #T 
'n) rn 

n 
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n 
1 - 

Mn - llMk 
k = l  

The unconditional mean of the squared estimation error 

is then 

^ j j  - Q j j ) ' ]  = E ( J j j )  + E[(Mn j j  ) 2 ] 
E[ (Qn n 

- A - A 

If Ro = R and Qo = Q ,  then E(AMn) = 0 and 

After some manipulation, AMn can be expressed in the following 

form. 
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# *  where fn = rnAn 

T fj 4 the jth column of fn Define 

a Q x y matrix 

a y x 1 vector 

a f3 x 1 vector 

a scalar 

a scalar 

a y x 1 vector 

where as before r and r are y x 1 vectors composed of the 

diagonal elements of R and E respectively. Then, after some 

algebraic manipulation, it can be shown that 
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From (2.3.43) 

* *T P nln - - DnPnln-l DT n + AnRAn 

so 

and 

Or 

-1 * *T T-1 'nln-1 = Dn ('nln - AnWn IDn 

n 

k=l 

* *T T-1 j - g n  j T ~ - l ~  n n R A ~  D~ gn 

k= 1 

k=l 

Then 
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From t h i s  it fo l lows  t h a t  

I n  a s i m i l a r  f a s h i o n  i t  can be  shown t h a t  

Define 

I n  a s i m i l a r  f a s h i o n  it can be  shown t h a t  

3 3 3  



Using a procedure s imi l a r  t o  t h a t  of f i n d i n g  E[ ( F j J )  2 ] ,  n 
it can be shown t h a t  

L . l  n 

I1 k = l  

I t  is easy t o  show t h a t  

where 

k= 1 

U" and W' can be computed as func t ions  of (a ) mRu and 

(8,) mRu. 
rill 41 n 

I t  can be seen t h a t  
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